Supporting information

Uniform and dendrite-free zinc deposition enabled by in-situ formed AgZn₃ modified Zn surface for zinc metal anode

Yunyun Wang¹, Yuejiao Chen¹,* Wen Liu¹, Xuyan Ni¹, Piao Qing¹, Qiwen Zhao¹, Weifeng Wei¹, Xiaobo Ji², Jianmin Ma³, Libao Chen¹*

- ¹ State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China
- ² College of Chemistry and Chemical Engineering, Central South University, , Changsha, Hunan 410083, People's Republic of China
- ³ School of Physics and Electronics, Hunan University, Changsha 410082, China
- * E-mail:cyj.strive@163.com; lbchen@csu.edu.cn

Figure S1: Photograph of preparation process of Ag coated Zn foil.

Figure S2: SEM images of Ag coated Zn foil at different immersion time: (a) 15min, (b) 18min.

Figure S3: Cross-sectional SEM image of Ag coated Zn foil at 10 min immersion time and EDS mapping of zinc and silver elements.

Figure S4: XRD patterns of pristine bare Zn and Ag coated Zn foil.

Figure S5: SEM images of Zn@Ag anode after 1000 cycles.

Figure S6: XRD patterns of surface powder on Zn@Ag anode after several cycles.

Figure S7: XPS spectrum and Ag 3d spectra of Zn@Ag anode before cycle and after 1st, 100th cycle.

Figure S8: Models of zinc (101) slab (a) and $AgZn_3$ (101) slab (b). Top view of Zn (101) surfaces (c) and $AgZn_3(101)$ surface(d). The binding sites of bridge, hollow, and top sites were labeled as B, H, and T, respectively. The binding

energy (in eV) of Zn atom on Zn(101) surface(c) and AgZn₃(101) surface(d). (a)

Figure S9: Long-term cycling profiles at 0.5 mA/cm² and 0.5 mAh/cm² in (a)

and 1 mA/cm^2 and 1mAh/cm^2 in (b).

Figure S10: SEM images of CNT/MnO₂ powder.

Figure S11: XRD pattern of CNT/MnO₂ composite materials.

Figure S12: Images of contact angles between the 2 M $ZnSO_4+0.2$ M $MnSO_4$ electrolyte and bare Zn or Ag coated Zn anode.

Figure S13: SEM images of bare/coated Zn anode after 100th cycle in full cell at 0.6 mA/cm².

Figure S14: Cycling performance of the full cells with different anodes at 0.2 A/g with 1.4 mg(a) and 3.5 mg(b) CNT/MnO₂