Electron Shuttle in MOF Derived TiO₂/CuO Heterojunction Boosts Light Driven Hydrogen Evolution

Yunbo Zhang,^{a,b} Wenhui Hu, ^b Denan Wang, ^b Benjamin J. Reinhart,^c Jier Huang ^{b*}

^aSchool of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, China

^bDepartment of Chemistry, Marquette University, Milwaukee, Wisconsin, 53201

°X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, 60349

Corresponding Author

*Jier Huang (jier.huang@marquette.edu)

Figure S1. The FTIR spectra of MIL-125, MIL-125_xCu, and Cu-BDC.

Figure S2. The EXAFS spectra of MIL-125 and MIL-125_0.4Cu at Ti k-edge in energy space (a) and k-space (b). The EXAFS spectra of Cu-BDC and MIL-125_0.4Cu at Cu k-edge in energy space (c) and k-space (d). The solid lines in (b) and (d) are the fitting results.

Figure S3. The EXAFS spectra of c-MIL-125 and c-MIL-125_0.4Cu at Ti k-edge in energy space (a) and k-space (b). The EXAFS spectra of c-Cu-BDC and c-MIL-125_0.4Cu at Cu k-edge in energy space (c) and k-space (d). The solid lines in (b) and (d) are the fitting results.

Sample	Vector	Ν	$\sigma^2(\text{\AA}^2)$	R (Å)
MIL-125	Ti-O ₁	3.05	0.01	1.82
	Ti-O ₂	0.43	0.01	1.96
	Ti-O ₃	1	0.01	2.07
	Ti-(O)-Ti	0.86	0.01	2.67
	Ti-O ₁	2.5	0.009	1.82
MIL-125_0.4Cu	Ti-O ₂	0.75	0.01	1.97
	Ti-O ₃	2.14	0.009	2.03
	Ti-(O)-Ti	0.7	0.01	3.04

Table S1. The EXAFS fitting parameters for MIL-125 and MIL-125_0.4Cu at Ti k-edge

Sample	Vector	Ν	$\sigma^2(\text{\AA}^2)$	R (Å)
Cu-BDC	Cu-O ₁	4	0.006	1.96
	Cu-O ₂	1	0.0062	2.25
MIL-125_0.4Cu	Cu-O ₁	4.25	0.0034	1.99
	Cu-O ₂	1.43	0.001	2.23

Table S2. The EXAFS fitting parameters for Cu-BDC and MIL-125_0.4Cu at Cu k-edge

Table S3. The EXAFS fitting parameters for c-MIL-125 and c-MIL-125_0.4Cu at Ti k-edge

Sample	Vector	N	$\sigma^2({\rm \AA}^2)$	R (Å)
c-MIL-125	Ti-O	2.68 0.01		1.94
	Ti-(O)-Ti	1.58	0.01	3.05
c-MIL-125_0.4Cu	Ti-O	3.4	0.01	1.93
	Ti-(O)-Ti	1.65	0.01	3.04

Table S4. The EXAFS fitting parameters for c-Cu-BDC and c-MIL-125_0.4Cu at Cu k-edge

Sample	Vector	Ν	$\sigma^2(\text{\AA}^2)$	R (Å)
c-Cu-BDC	Cu-O	4	0.0052	1.94
	Cu-(O)-Cu	2	0.006	2.88
C-MIL-125_0.4Cu	Cu-O	4	0.0059	1.89
	Cu-(O)-Cu	2	0.0087	2.90

Figure S4. Diffuse reflectance spectra of c-MIL-125_xCu.

Figure S5. N₂ adsorption/desorption isotherm of c-MIL-125_0.4Cu

Table S5. Surface area and pore structure for samples. ^a Obtained from the samples of	ne N ₂
adsorption experiment. ^b Collected from the literature ¹⁻² .	

Samples	BET surface area	Pore size	Pore volume
^a c-MIL-125_0.4Cu	178 m ² /g	8.5 nm	0.38 cm ³ /g
^b MIL-125 ¹	1254 m ² /g	0.9 nm	0.52 cm ³ /g
^b c-MIL-125 ¹	60 m ² /g	3~5 nm	0.15 cm ³ /g
^b Cu-BDC ²	507.621 m ² /g	6 nm	0.34 cm ³ /g

Variables	Trials	$H_2(\mu mol/g)$
Control experiment	No $[Ru(bpy)_3]^{2+}$	0
-	No TEOA	0
	No catalyst	291
	Conventional TiO ₂	105
Current of LED	0.1 A	19036
	0.2 A	19669
	0.2mg c-MIL-125_0.4Cu	19036
Amount of catalyst	0.5mg c-MIL-125_0.4Cu	7348
·	1mg c-MIL-125_0.4Cu	6431
	0.1mL TEOA	16471
TEOA concentration	0.2mL TEOA	19036
	0.4mL TEOA	15642

Table S6. Parameters of HER experiments

Figure S6. (a) SEM image of c-MIL-125_0.4Cu used for measuring EDX; EDX mapping images of c-MIL-125_0.4Cu for Ti (b) and Cu (c).

Figure S7. EDX data of c-MIL-125_0.4Cu

Figure S8. (a) The comparison of UV-Visible absorption spectra of [Ru(bpy)₃]²⁺ before and after photocatalysis. (b) The comparison of XRD patterns of c-MIL-125_0.4Cu before and after photocatalysis.

Table S7. Fitting parameters for TA kinetics of $[Ru(bpy)_3]^{2+}/Al_2O_3$ and $[Ru(bpy)_3]^{2+}/c-MIL-125$ at 500 nm following 450 nm excitation

MOF	$\tau_1(ps)$	A ₁ (%)	$\tau_2(ps)$	A ₂ (%)	$ au_3$ (ps)	A ₃ (%)
[Ru(bpy) ₃] ²⁺ /c-MIL-125	15.4	55.6	620.0	30.9	>>5ns	13.5
$[Ru(bpy)_3]^{2+}/Al_2O_3$	4.34	54.4	697.0	27.7	>>5ns	17.9

Reference

1. Liao, Y.-T.; Huang, Y.-Y.; Chen, H. M.; Komaguchi, K.; Hou, C.-H.; Henzie, J.; Yamauchi, Y.; Ide, Y.; Wu, K. C., Mesoporous TiO2 Embedded with a Uniform Distribution of Cuo Exhibit Enhanced Charge Separation and Photocatalytic Efficiency. *ACS Appl. Mater. Interfaces*, **2017**, *9*, 42425-42429.

2. Zhang, H.-X.; Huang, H.-L.; Li, C.-X.; Meng, H.; Lu, Y.-Z.; Zhong, C.-L.; Liu, D.-H.; Yang, Q.-Y., Adsorption Behavior of Metal–Organic Frameworks for Thiophenic Sulfur from Diesel Oil. *Ind. Eng. Chem. Res.* **2012**, *51*, 12449-12455.