Supporting Information

Few-layer Large $Ti_3C_2T_x$ Sheets Exfoliated by NaHF₂ and Applied to Sodium-Ion Battery

Yan Zhao ^a, Meng Zhang ^a, Hong Yan^{*a,b}, Yu Feng ^a, Xinyu Zhang ^c, Ruijie Guo ^{a,b}

^a College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China

^b Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China

^c Department of Chemical Engineering, Auburn University, Auburn 36849, U.S.A.

Figure S1. Optical images of Ti_3AlC_2 and $Na-Ti_3C_2T_x$ powder: (a) Ti_3AlC_2

powder; (b) multilayered $Ti_3C_2T_x$ powder etched by NaHF₂.

Figure S2. SEM images of $Ti_3C_2T_x$ etched in: (a) NH₄HF₂ solution; (b) HF solution; and (c) NaHF₂ solution.

Figure S3. (a) AFM image and (b) height-profile.

Figure S4. SEM images of Na-Ti₃C₂T_x: after bath sonication for 10 min and centrifugation for 1 h at 3500 rpm, (a) \times 3000; (b) \times 2000.

Figure S5. Flexible $Ti_3C_2T_x$ MXene film.

MXenes	Current Density (A·g ⁻¹)	Cycle Number	Specific Capacity (mAh·g ⁻¹)	Refs
Black phosphorus/Ti ₃ C ₂ (HF)	1	10	67.3	(1)
NaTi ₂ (PO ₄) ₃ /Ti ₃ C ₂	1	10	166	(2)
Ti ₃ C ₂ (HF)	0.02	50	103	(3)
	0.5	10	60	
Ti ₃ C ₂ (HF)	0.02	100	100	(4)
	0.5	10	60	
Ti ₃ C ₂ (HF)	0.1	120	80	(5)
a-Ti ₃ C ₂ MNRs (HF)	0.2	500	53	(6)
Ti ₃ C ₂ (HCl + LiF)	0.1	75	87	(7)
Ti ₃ C ₂ (HCl + LiF)	1	100	102	(8)
Ti ₃ C ₂ (HF)	0.2	1000	68.3	(9)
Ti ₃ C ₂ (NaHF ₂)	1	900	70	this
	1	1000	120	work

Table S1. Comparison of performances of different MXenes

References

1. H. Li, A. Liu, X. Ren, Y. Yang, L. Gao, M. Fan, T. Ma, Nanoscale 2019, 11, 19862.

2. Q. Yang, T. Jiao, M. Li, Y. Li, L. Ma, F. Mo, G. Liang, D. Wang, Z. Wang, Z. Ruan, W. Zhang, Q. Huang, C. Zhi, *J. Mater. Chem. A* 2018, **6**, 18525.

3. J. Zhu, M. Wang, M. Lyu, Y. Jiao, A. Du, A. Luo, B. Luo, I. Gentle, L. Wang, ACS Appl. Nano Mater. 2018, 1, 6854.

4. S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, K. Gotoh, Y. Tateyama, M. Okubo, A. Yamada, *ACS nano* 2016, **10**, 3334.

5. Y. Xie, Y. Dall'Agnese, M. Naguib, Y. Gogotsi, M. W. Barsoum, H. L. Zhuang, P. R. C. Kent, ACS nano 2014, 8, 9606.

6. P. Lian, Y. Dong, Z. S. Wu, S. Zheng, X. Wang, S. Wang, C. Sun, J. Qin, X. Shi, X. Bao, *Nano Energy* 2017, **40**, 1.

7. J. Qin, L. Hao, X. Wang, Y. Jiang, X. Xie, R. Yang, M. Cao, Chem. Eur. J. 2020, 26, 11231.

8. T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo, T. Qiu, J. Yang, J. Alloys Compd. 2017, 695, 818.

9. X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu, L. Chen, J. Am. Chem. Soc. 2015, 137, 2715.