Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material

MnO₂ nanosheets@nitrogen-doped graphene aerogel enable high specific energy

and high specific power for supercapacitor and Zn-air battery

Hui Zhao^a, Rijuan Jiang^a, Yong Zhang^a, Beibei Xie^a, Jiali Fu^a, Xiaona Yuan^a, Wenxin Yang^a, Yan Wu^a, and Renjie Zhang^{a,b,c}*

^a Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China, Shandong University, Jinan 250100, P. R. China
^b Key Laboratory of Special Functional Aggregated Materials of the Ministry of Education of the P.R. China, Shandong University, Jinan 250100, P. R. China
^c National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, P. R. China

*Corresponding author, Email: zhrj@sdu.edu.cn

EXPERIMENTAL

Synthesis of GO

GO was prepared by modified Hummers' method,¹ followed by washing several times with 5% HCl and water. Then GO was sonicated (300 W) for 8 h below 25 °C.² Finally, a homogeneous GO aqueous suspension was obtained and used for preparation of NGA and MNSs@NGA.

Calculation of the ratio of exposed surficial unit cells

The ratio of exposed surficial unit cells is calculated by dividing number of exposed surficial unit cells (N_1) by total number of unit cells (N_2) according to the following equation (S1):

Ratio of exposed unit cells =
$$\frac{N_I}{N_2} = \frac{S_I/S_2}{V_I/V_2}$$
 (S1)

Where S_1 is surface area of three exposed surface of a single MnO₂ nanosheet, S_2 is area of the rhombus section of a [MnO₆] regular octahedron, V_1 is volume of a single MnO₂ nanosheet and V_2 is volume of a [MnO6] regular octahedron. Assuming the MnO₂ nanosheet is a cuboid, the length, width and height of the cuboid are 100, 50 and 5 nm, respectively. V_1 is 25000 nm³ and S₁ is 10000 nm². V_2 is 0.086 nm³ and S_2 is 0.092 nm². Therefore, the ratio of exposed surficial unit cells is 37.4%.

SUPPLEMENTARY FIGURES AND TABLES

Fig. S1 (a, b) SEM images and (c, d) TEM images of NGA at different magnifications.

Fig. S2 (a) N_2 adsorption-desorption isotherms at -196 °C and (b) pore size distribution of NGA.

Fig. S3 (a) Mn 2p XPS spectrum of MNSs@NGA. (b) XRD patterns of MNSs@NGA, NGA and λ -MnO₂ (JCPDS 44-0992). (c) TGA curve of MNSs@NGA. (d) EDX spectrum and quantitative analysis of MNSs@NGA. (e) Sum XPS spectrum and quantitative analysis of MNSs@NGA. (f) Raman spectra of MNSs@NGA and NGA.

Fig. S4 Nyquist plots of MNSs@NGA and NGA from EIS measurements in O₂-saturated 0.1 M KOH solution.

Fig. S5 CV curves of (a) MNSs@NGA and (b) NGA at different scan rates in 1.0 M KOH at the voltage range of 0.20-0.30 V (*vs.* Ag/AgCl). (c) CV curves at a scan rate of 5 mV s⁻¹ and (d) the current density at 0.25 V (*vs.* Ag/AgCl) against scan rate of MNSs@NGA and NGA.

Table	S1	Comparison	of	supercapacitor	performance	between	MNSs@NGA	and
-------	-----------	------------	----	----------------	-------------	---------	----------	-----

reported MnO _x -based ma	aterials
-------------------------------------	----------

Sample	Morphology	Specific surface area / m ² g ⁻¹	Voltage window / V	Electrolyte	Specific capacitance / F g ⁻¹	Rate capability	Cycling stability	Ref.
							90.3%	
CNT/MnO ₂ /r				1.0 M	298 at 0.5 A	207.0 F g-	after	Carbon
GO			0-0.8	Na_2SO_4	g-1	¹ at 10 A	5000	2018, 132,
	Constant Anna					g-1	cycles at	776.
	В					2(0.0.5.)	10 A g ⁻¹	G., 11 2015
MnO ₂ /GO		1(2.0	0100	1.0 M Na ₂ SO ₄	297 at 5 mV	268.0 F g		Small 2015,
composites		162.0	0.1-0.9			r at 50		11 (11),
						III V S	87 3%	1310-1319.
howl-like						229 0 F g-	after	Chem Eng
MnO ₂	200m	182.4	0-0.8	1.0 M Na ₂ SO ₄	379 at 0.5 A g ⁻¹	¹ at 10 A	5000	J. 2018, 350,
nanosheets						g^{-1}	cycles at	79.
						C	0.5 A g ⁻¹	
diatom/MnO ₂		67.3	-0.2-0.8	1.0 M Na ₂ SO ₄	371.2 at 0.5 A g ⁻¹	203.0 F g ⁻ ¹ at 10 A g ⁻¹	93.1% after 2000 cycles at 5 A g ⁻¹	J. Mater. Chem. A 2015, 3 (15), 7855-7861.
MnO ₂ -NHCSs	(d) 200 nm	213.1	-0.1-0.9	1.0 M Na ₂ SO ₄	392 at 0.5 A g ⁻¹	222.0 F g ⁻ ¹ at 10 A g ⁻¹		Mater. Chem. Front. 2020, 4 (1), 213-221.
	d						95.2%	
MNG		821.3	-0.2-1	1.0 M Na ₂ SO ₄	690.2 at 1 A	563.2 F g ⁻	atter	This worl-
winds@indA					g ⁻¹	• at 20 A	10 000	1 IIIS WOFK
	50 mm					g	$10 \text{ A} \text{ g}^{-1}$	
							10/16	

CNT/MnO₂/rGO: carbon nanotube@manganese oxide nanosheet core-shell structure encapsulated

within reduced graphene oxide film

MnO₂-NHCSs: ultrathin MnO₂ nanoflakes grown on N-doped hollow carbon spheres

Table S2 Comparison of asymmetrical supercapacitor performance between

ASC	Morphology	Voltage window / V	Electrolyte	Specific capacitance / F g ⁻¹	E / Wh kg ⁻¹	P / W kg-1	Cycling stability	Ref.
ACEP@Mn O ₂ //AC	(b) 200 mm	0-2.0	1.0 M Na ₂ SO ₄	111.6 at 0.5 A g ⁻¹	31	500	~100% after 5000 cycles at 5 A g ⁻¹	ACS Sustainable Chem. Eng. 2018, 6 (1), 633.
MnO ₂ /GO// HPC		0-2.0	1.0 M Na ₂ SO ₄	52 at 1.0 A g ⁻¹	46.7	100	93% after 4000 cycles at 1 A g ⁻¹	Small 2015, 11 (11), 1310-1319.
PPy/MnO ₂ // N-doped mesoporous carbon		0-2.0	1.0 M Na ₂ SO ₄	69.5 at 0.5 A g ⁻¹	38.6	900	90.6% after 5000 cycles at 5 A g^{-1}	Chem. Eng. J. 2017, 307, 105.
yolk–shell MnO2@Mn O2//AC	(k)	0-1.8	1.0 M Na ₂ SO ₄	90.8 at 1.0 A g ⁻¹	40.2	891.2	82% after 10000 cycles at 10 A g ⁻¹	J. Mater. Chem. A 2018, 6 (4), 1601.
MnO ₂ nanoflakes shell@PPy core//AC	() <u>:(611)</u>	0-2.0	1.0 M Na ₂ SO ₄	57 at 1.0 A g ⁻¹	25.8	901.7	90.3% after 6000 cycles at 3 A g ⁻¹	Nano Energy 2017, 35, 242.
Mn ₃ O ₄ -rGO- 2//AC		0-1.7	2.0 M KOH	180.2 at 1.0 A g ⁻¹	72.3	864.0	93.4% after 5000 cycles at 10 A g-1	J. Mater. Chem. A 2019, 7, 6686-6694.
MNSs@NG A//AC		0-2.0	1.0 M Na ₂ SO ₄	199.0 at 1.0 A g ⁻¹	110.6	1000.4	96.2% after 10000 cycles at 5 A g ⁻¹	This work

MNSs@NGA	and reported	MnO _x -based	materials

 $MnO_2/GO//HPC: MnO_2/GO//3D$ hierarchical porous structure carbon material derived from Artemia cyst shell

Mn₃O₄-rGO-2: Mn₃O₄ hollow spheres with controlled shell numbers in reduced graphene oxide

Fig. S6 (a) SEM image, (b) HRTEM image and (c) SAED pattern of MNSs@NGA after cycling stability test. (d) XRD patterns of MNSs@NGA before and after cycling stability test.

Fig. S7 (a) C 1s, (b) N 1s, (c) O 1s and (d) Mn 2p XPS spectra of MNSs@NGA before

and after cycling stability test.

\

Fig. S8 (a) a plot of log (i) vs. log (v) from 5 to 100 mV s⁻¹ for MNSs@NGA. Proportion of surface capacitive current contributions of total current of (a) MNSs@NGA at scan rates of (b) 20 and (c) 50 mV s⁻¹. Proportion of surface capacitive current contributions of total current of (d) NGA and (e) NGA-1 at the scan rate of 20 mV s⁻¹. (f) GCD curves at different current densities of NGA-1.

Fig. S9 SEM image of NGA-1.

Sample	Morphology	Specific surface area / m ² g ⁻¹	E _{onset} / V	$E_{1/2}$ / V	Tafel slope / mV dec ⁻¹	n	Cycling stability	Ref.
Ni- MnO/rGO aerogels		109	0.94	0.78	85	4	93.7% after 10000 s	Adv Mater. 2018, 30, 1704609.
Mn ₃ O ₄ /rG O		89	0.86	0.76		3.96	88.5% after 20000 s	J. Colloid Interface Sci. 2017, 488, 251.
MnO ₂ /rGO	200 nm	183	0.83	0.69		3.85		Int. J. Hydrogen Energy 2016, 41, 5260.
Co/MnO	C. 500 nm		0.906	0.819	98	3.89	84.2% after 35000 s	Catal. Sci. Technol. 2018, 8, 480.
MNSs@N GA		821.3	0.97	0.82	76	3.99	87.2% after 50000 s	This work

Table S3 ORR catalytic properties comparison of MNSs@NGA to reported MnO_x -based catalysts

GMNCs: Graphene sheets@MnO@ N-doped carbon composites

Co-MONSs/MC: Co ions-doped MnO2 nanosheets/macroporous carbon composites

Fig. S10 Photograph of a blue LED (\approx 3 V) lit by two series Zn-air batteries with MNSs@NGA as air cathode after 24 h.

Sample	Electrolyte	Loading mass of catalyst / mg cm ⁻²	Open-circuit voltage / V	P/ mW cm ⁻²	Specific capacity / mAh g _{Zn} ⁻¹	$E / Wh kg_{Zn}^{-1}$	Ref.
FeCo @MN C	6.0 M KOH + 0.20 M Zn(Ac) ₂	3.2	1.41	115.0			Appl. Catal. B 2019, 244, 150-158
FeNi@ N-GR	6.0 M KOH + 0.20 M Zn(Ac) ₂	2.0	1.35	85	765	940	Adv. Funct. Mater. 2018, 28 (14), 1706928
Ni ₃ Fe/ N-C sheets	6.0 M KOH + 0.20 M ZnCl ₂				528	634	Adv. Energy Mater. 2017, 7, 1601172
S-LCO	6.0 M KOH + 0.20 M Zn(Ac) ₂	2.0	1.47	92	747		Chem. Mater. 2020, 32, 3439-3446
ZnCo ₂ O ₄ /N- CNT	6.0 M KOH + 0.20 M ZnCl ₂	2.0	1.47	82.3	428.5	595.6	Adv. Mater. 2016, 28, 3777-3784
Co ₃ O ₄ nanopl ates	6.0 M KOH + 0.20 M Zn(Ac) ₂	2.0		59.7	702.4	901.6	Energy 2019, 166, 1241-1248
MNSs @NG A	6.0 M KOH + 0.20 M ZnCl ₂	2.0	1.52	115.0	794.6	961.5	This work

 Table S4 Comparison of the performances of Zn-air batteries with reported
 electrocatalysts

FeCo@MNC: mesoporous Fe/Co-N-C nanofibers with embedding FeCo nanoparticles FeNi@N-GR: FeNi@N-graphene core-shell nanostructures

Ni₃Fe/N-C: Ni₃Fe nanoparticles embedded in porous nitrogen-doped carbon sheets S-LCO: S-doped LaCoO₃

ZnCo₂O₄/N-CNT: ZnCo₂O₄/N-doped-CNT

Fig. S11 Long term cycling performance at a constant current density of 10 mA cm⁻²

of Zn-air batteries separately with MNSs@NGA and $Pt/C + IrO_2$ as air cathode.

Fig. S12 Enlarged 1st and corresponding cycle (200th and 100th) of the dischargecharge voltage profiles of Zn-air batteries with (a) MNSs@NGA and (b) $Pt/C + IrO_2$ catalyst as air cathode.

References and notes

 D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, *ACS Nano*, 2010, 4, 4806-4814. 2. J. Xin, R. J. Zhang and W. G. Hou, J. Mater. Chem. B, 2014, **2**, 3697-3704.