General methods. Commercial reactants were used without further purification. Solvents were dried according to standard methods. ${ }^{1} \mathrm{H}$ NMR spectra were recorded by Bruker AVANCE III HD 400 MHz instrument, and were internally referenced to residual solvent signals (${ }^{1} \mathrm{H}$ NMR: CDCl_{3} and DMSO- d_{6} referenced at 7.26 and 2.54 ppm , respectively; ${ }^{13} \mathrm{C}$ NMR: DMSO- d_{6} referenced at 40.45 ppm). Gas chromatography was conducted on an Agilent 6890. Single crystal X-ray diffraction was recorded on a Bruker SMART CCD diffractometer. UV-visible spectra were recorded with a PerkinElmer Lambda 365 UV-Visible spectrometer. Fluorescence spectra were recorded with a PerkinElmer LS-55 fluorescence spectrometer. Fourier Transform Infrared spectra were recorded with a ThermoFisher Nicolet iS10 FT-IR spectrometer. Thermogravimetric analysis (TGA) profiles were recorded on a TGA 8000 thermogravimetric analyzer. Nitrogen adsorption experiments were recorded on a Micromeritics Tristar II 3020 analyzer. X-ray photoelectron spectra (XPS) were recorded on a PHI 5000C\&PHI5300 spectrometer. Scanning electron microscopic (SEM) images were obtain on a Phenom Prox microscope. Energy dispersive spectra (EDS) were obtained on a Tecnai G2 F20 S-Twin microscope. ICP-AES analysis were obtained on a PE-8000 inductively coupled plasma emission spectrometer. The crystal data of complex 2a has been deposited in Cambridge Crystallographic Data Centre (CCDC deposit no. 2040861).

Compound 2a. Compound 1a ($636.6 \mathrm{mg}, 3.0 \mathrm{mmol}$) and ferrous chloride ($126.7 \mathrm{mg}, 1.0 \mathrm{mmol}$) were dissolved in deionized water (15 mL). The mixture was stirred for 3 h at room temperature. Saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added dropwise to the mixture till no more precipitate formed. The precipitate was filtered to afford the crude product, which was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ to prepare a saturated solution. Ethyl ether was added dropwise to the solution, and the precipitate formed was filtrated and washed with cold diethyl ether to give 2a as a bronze solid ($834 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 10.25(\mathrm{~s}, 6 \mathrm{H}$), $9.06(\mathrm{~s}, 6 \mathrm{H}), 8.86$ (s, 6 H), 7.96 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d): δ 193.97, 156.51, 151.73, 143.49, 123.36, 120.04. FT-IR (KBr) 1707, 1617, 1559, 1478, 1416, 1390, 1380, 1314, 1232, 1198, 1181, 843 cm^{-1}. The structure of $\mathbf{2 a}$ was further confirmed by its X-ray crystal structure (CCDC deposit no. 2040861). The single crystals were grown by evaporating the solution in acetonitrile.

Fe-POP-1. Compounds $\mathbf{2 a}(32.7 \mathrm{mg}, 0.033 \mathrm{mmol})$ and $\mathbf{3 a}(10.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ were dissolved in a mixture of 1,4-dioxane/mesitylene ($19 / 1, \mathrm{v} / \mathrm{v}$) (2 mL) and aqueous acetic acid ($6 \mathrm{M}, 0.2$ mL) in a 10 mL Schlenk tube. The tube was sealed after being degassed in a liquid nitrogen
bath for 10 min and then kept at $120^{\circ} \mathrm{C}$ for 72 h to yield a dark purple solid at the bottom of the tube. After cooling to room temperature, the precipitate was filtered and washed with DMSO and further extracted with THF in a Soxhlet extractor. After being dried under vacuum at $40^{\circ} \mathrm{C}$ for 12 h , the POP was obtained as a dark purple powder ($30.7 \mathrm{mg}, 77 \%$), which was insoluble in common solvents including water, DMSO, DMF, acetone or acetonitrile.

Fe-POP-2. Compounds $\mathbf{2 a}(32.7 \mathrm{mg}, 0.033 \mathrm{mmol})$ and $\mathbf{3 b}(18.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ were dissolved in a mixture of 1,4-dioxane/mesitylene ($3 / 1, \mathrm{v} / \mathrm{v}$) $(2 \mathrm{~mL})$ and aqueous acetic acid ($6 \mathrm{M}, 0.2 \mathrm{~mL}$) in a 10 mL Schlenk tube. The tube was sealed after being degassed in a liquid nitrogen bath for 10 min and then kept at $120^{\circ} \mathrm{C}$ for 72 h and then cooled to room temperature. The dark purple precipitate formed was filtered and washed with DMSO. The solid was then extracted in a Soxhlet extractor with THF and then dried under vacuum at $40^{\circ} \mathrm{C}$ for 12 h to give $\mathbf{F e - P O P - 2}$ as a dark purple powder ($40.3 \mathrm{mg}, 85 \%$). The product was insoluble in common solvents including water, DMSO, DMF, acetone or acetonitrile.

Fe-POP-3. Compounds 2a ($32.7 \mathrm{mg}, 0.033 \mathrm{mmol}$) and $\mathbf{3 c}(26.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ were dissolved in a mixture of 1,2 -dichlorobenzene/isopropanol $(1 / 3, \mathrm{v} / \mathrm{v})(2 \mathrm{~mL})$ and aqueous acetic acid (6 $\mathrm{M}, 0.2 \mathrm{~mL}$) in a 10 mL Schlenk tube. The tube was sealed after being degassed in a liquid nitrogen bath for 10 min and then kept at $120^{\circ} \mathrm{C}$ for 72 h to yield a purple solid. After cooling to room temperature, the solid was filtered, washed with DMSO, extracted in a Soxhlet extractor with THF and dried under vacuum at $40^{\circ} \mathrm{C}$ for 12 h to give $\mathbf{F e}-\mathbf{P O P}-\mathbf{3}$ as a purple powder ($45.2 \mathrm{mg}, 82 \%$), which was insoluble in common solvents including water, DMSO, DMF, acetone or acetonitrile.

General method for visible-light-driven oxidation reaction of benzyl halides. Benzyl halide 4 ($1 \mathrm{mmol}, 1.0$ equiv.), Fe-POP-3 ($16.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv.), 4-methoxypyridine (21.8 $\mathrm{mg}, 0.2 \mathrm{mmol}, 0.2$ equiv.) and $\mathrm{Li}_{2} \mathrm{CO}_{3}(73.9 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.) were dissolved in DMAc $(5 \mathrm{~mL})$. The heterogeneous catalyst was dispersed via ultrasound and a needle was inserted into the reaction flask to provide air. The mixture was stirred under the irradiation of two blue LED lights for 24 h at the distance of 8 cm . A powerful fan was used to keep the system cool. After reaction, 5 mL HCl (aq., 1 M) was added to the mixture. The mixture was extracted with ethyl acetate $(10 \mathrm{~mL} \times 3)$ and the organic phase was combined. The solution was then washed with deionized water ($15 \mathrm{~mL} \times 3$) and brine (15 mL) and concentrated in vacuo. The product was purified by flash column chromatography on silica gel (hexane/ether acetate) to give 5 .

Compound 5a. Compound 4a (243.1 mg) was used to give 5a (125 mg , 70%), which was purified by flash column chromatography (hexane/ether acetate $=30 / 1, \mathrm{v} / \mathrm{v}$) as pale-yellow oil. ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{tt}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.45(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Compound 5b. Compound 4b (229 mg) was used to give 5b (144 mg , 87%), which was purified by flash column chromatography (hexane/ether acetate $=40 / 1, \mathrm{v} / \mathrm{v}$) as colorless oil. ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{tt}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$.

Compound 5c. Compound $\mathbf{4 c}(259.2 \mathrm{mg}$) was used to give $\mathbf{5 c}$ ($198.4 \mathrm{mg}, 93 \%$), purified by flash column chromatography (hexane/ether acetate $=40 / 1, \mathrm{v} / \mathrm{v}$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.37-$ $5.27(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H})$.

Compound 5d. Compound $\mathbf{4 d}(264 \mathrm{mg})$ was used to give $\mathbf{5 d}(160 \mathrm{mg}, 81 \%)$, purified by flash column chromatography (hexane/ether acetate $=50 / 1, \mathrm{v} / \mathrm{v}$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{dt}, J=8.8,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dt}, J=8.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$.

Compound 5e. Compound $\mathbf{4 d}(264 \mathrm{mg})$ was used to give $\mathbf{5 c}$ ($160 \mathrm{mg}, 81 \%$), purified by flash column chromatography (hexane/ether acetate $=40 / 1, \mathrm{v} / \mathrm{v}$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{dt}, J=9.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{dt}, J=9.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$.

Compound 5f. Compound $\mathbf{4 f}$ (275.2 mg) was used to give $\mathbf{5 f}$ ($202 \mathrm{mg}, 96 \%$), purified by flash column chromatography (hexane/ether acetate $=50 / 1, \mathrm{v} / \mathrm{v})$ as yellow solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.99-7.97 (m, 2H), $7.66(\mathrm{tt}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.

Compound 5g. Compound $\mathbf{4 g}(245.1 \mathrm{mg})$ was used to give $\mathbf{5 g}(160.4 \mathrm{mg}, 88 \%)$, purifed by flash column chromatography (hexane/ether acetate $=50 / 1, \mathrm{v} / \mathrm{v}$) as yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H})$.
General method for visible-light-driven enantioselective α-alkylation of aldehydes. Aldehyde $\mathbf{6}$ ($1.0 \mathrm{mmol}, 2.0$ equiv.), bromide $7(0.5 \mathrm{mmol}, 1.0$ equiv.), chiral organocatalyst $\mathbf{8}$ ($32 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.2$ equiv.), Fe-POP-3 ($8.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.01$ equiv.) and 2,6-lutine (107 $\mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.) were dissolved in anhydrous DMF (1 mL). The reaction flask was sealed after the heterogeneous catalyst was dispersed via ultrasound and the mixture was protected by N_{2}. The mixture was stirred with irradiation of two blue LED lights for 24 h . A fan was used to keep the system cool. After reaction, 5 mL HCl (aq., 1 M) was added to the mixture. The mixture was extracted with ethyl acetate $(10 \mathrm{~mL} \times 3)$ and the organic phase was combined. The solution was then washed with deionized water ($15 \mathrm{~mL} \times 3$) and brine (15 mL) and concentrated in vacuo. The product was purified by flash column chromatography on silica gel (hexane/ether acetate) to give 9 .

Compound 9a. Compounds 6a (134.2 mg) and $7 \mathbf{7 a}(119.5 \mathrm{mg})$ were used to give 9 a (121 mg , 83% yield, 95% ee), purified flash column chromatography (hexane/ether acetate $=11 / 1, \mathrm{v} / \mathrm{v}$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.22-4.14(\mathrm{~m}$, $4 \mathrm{H}), 3.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (dd, $J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$. The enantiomeric excess was determined by chiral HPLC with IC chiral column (hexane/isopropanol=90/10; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$); (S)isomer: $\mathrm{t} r=14.38 \mathrm{~min},(R)$-isomer: $\mathrm{t} r=17.08 \mathrm{~min}$.

Compound 9b. Compounds $\mathbf{6 a}(134.2 \mathrm{mg})$ and $\mathbf{7 b}(99.5 \mathrm{mg})$ were used to give $\mathbf{9 b}(108 \mathrm{mg}$, 85% yield, 92% ee), purified by flash column chromatography (hexane/ether acetate $=9 / 1, \mathrm{v} / \mathrm{v}$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{tt}, J=7.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.17$ (dd, $J=13.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 1 \mathrm{H})$. The enantiomeric excess was determined by chiral HPLC with IC chiral column (hexane/isopropanol $=95 / 5$; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-}$ ${ }^{1}$); (S)-isomer: $\mathrm{tr}=14.68 \mathrm{~min},(R)$-isomer: $\mathrm{t} r=16.06 \mathrm{~min}$.

Compound 9c. Compounds 6a (134.2 mg) and 7c (116.7 mg) were used to give $9 \mathbf{c}(113 \mathrm{mg}$, 80% yield, 89% ee), purified by flash column chromatography (hexane/ether acetate $=9 / 1, \mathrm{v} / \mathrm{v}$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.19$ (m, 5H), $6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=14.4,7.6 \mathrm{~Hz}, 1 \mathrm{H})$. The enantiomeric excess was determined by chiral HPLC with IC chiral column (hexane/isopropanol $=90 / 10$; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$); (S)-isomer: $\mathrm{t} r=33.54 \mathrm{~min},(R)$-isomer: $\mathrm{t} r=37.53 \mathrm{~min}$.

Compound 9d. Compounds 6a (134.2 mg) and $\mathbf{7 d}(114.5 \mathrm{mg})$ were used to give $\mathbf{9 d}(110.4 \mathrm{mg}$, 77% yield, 93% ee), purified by flash column chromatography (hexane/ether acetate $=10 / 1$, v / v) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32-7.18(\mathrm{~m}, 5 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.17$ (dd, $J=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-$ $2.91(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H})$. The enantiomeric excess was determined by chiral HPLC with IC chiral column (hexane/isopropanol $=95 / 5$; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$); (S)-isomer: $\mathrm{t} r=13.80 \mathrm{~min}$, (R)-isomer: $\mathrm{t} r=15.40 \mathrm{~min}$.

Compound 9e. Compounds 6b (128.2 mg) and 7a (99.5 mg) were used to give $\mathbf{9 e}(123 \mathrm{mg}$, 86% yield, 93% ee), purified by flash column chromatography (hexane/ether acetate $=12 / 1$, v / v) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.17(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 16 \mathrm{H}), 0.89-$ 0.85 (m, 3H).

The enantiomeric excess was determined using the reported method (Ref. 58 in the main text): Compound $9 \mathrm{e}(40 \mathrm{mg})$ was added to a mixture of 17.5 mg of $(2 S, 4 S)-(+)$-pentanediol and 3 mg of p-toluenesulfonic acid monohydrate in DCM (2 mL). After 1 h , the consumption of the aldehyde was complete (monitored by TLC). The mixture was concentrated in vacuo and the enantiomeric excess of the title compound was determined by integrating the two ${ }^{1} \mathrm{H}$ NMR signals (both doublets) in CDCl_{3} at 3.70 ppm (minor) and 3.67 ppm (major) arising from the resultant diastereomeric acetals.

Compound 9f. Compounds $\mathbf{6 b}$ (128.2 mg) and $\mathbf{7 b}(99.5 \mathrm{mg}$) were used to give $\mathbf{9 f}$ ($106 \mathrm{mg}, 86 \%$ yield, 95% ee), purified by flash column chromatography (hexane/ether acetate $=8 / 1, \mathrm{v} / \mathrm{v}$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.47 (dd, $J=18.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.99$ (m, 2H), 1.83$1.74(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$. The enantiomeric excess was determined by chiral HPLC with IC chiral column (hexane/isopropanol=95/5; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$); (S)-isomer: $\mathrm{t} r=14.26 \mathrm{~min},(R)$-isomer: $\mathrm{t} r=17.44 \mathrm{~min}$.

Compound $9 \mathbf{g}$. Compounds $\mathbf{6 b}(128.2 \mathrm{mg})$ and $\mathbf{7 c}(116.7 \mathrm{mg})$ were used to give $\mathbf{9 g}(132 \mathrm{mg}$, 84% yield, 93% ee), purified by flash column chromatography (hexane/ether acetate $=9 / 1, \mathrm{v} / \mathrm{v}$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.87 (s, 3H), 3.41 (dd, $J=17.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.04$ (m, 1H), 2.99 (dd, $J=$ $17.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H})$. The enantiomeric excess was determined by chiral HPLC with IC chiral column (hexane/isopropanol=90/10; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$); (S)-isomer: $\mathrm{t} r=26.48 \mathrm{~min},(R)$-isomer: $\mathrm{t} r=$ 30.94 min.

Compound 9h. Compounds $\mathbf{6 b}(128.2 \mathrm{mg})$ and $\mathbf{7 d}(114.5 \mathrm{mg})$ were used to give $\mathbf{9 h}(109.5 \mathrm{mg}$,
79% yield, 93% ee), purified by flash column chromatography (hexane/ether acetate $=9 / 1, \mathrm{v} / \mathrm{v}$) as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{dd}, J=18.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=17.6,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. The enantiomeric excess was determined by chiral HPLC with IC chiral column (hexane/isopropanol = 95/5; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$); (S)-isomer: $\mathrm{t} r=12.32 \mathrm{~min},(R)$-isomer: $\mathrm{t} r=$ 14.44 min .

Fig. S1 Thermogravimetric profile of polymers Fe-POP-1~3.

Fig. S2 FT-IR spectra of compound 2a, 3a and polymer Fe-POP-1.

Fig. S3 FT-IR spectra of compound 2a, 3b and polymer Fe-POP-2.

Fig. S4 FT-IR spectra of compound 2a, 3c and polymer Fe-POP-3.

Fig. S5 Solid state UV-vis absorption spectra of Fe-POP-1~3.

Fig. S6 Solid state fluorescence emission spectra of Fe-POP-1~3.

Fig. S7 Scanning electron microscope (SEM) image of Fe-POP-1.

Fig. S8 Scanning electron microscope (SEM) image of Fe-POP-2.

Fig. S9 Scanning electron microscope (SEM) image of Fe-POP-3.

Fig. S10 PXRD spectra of $\mathbf{F e}-\mathrm{POP}-1 \sim 3$.

Fig. S11 Energy dispersive spectroscopic (EDS) images of polymer Fe-POP-1.

Fig. S12 Energy dispersive spectroscopic (EDS) images of polymer Fe-POP-2.

Fig. S13 Energy dispersive spectroscopic (EDS) images of polymer Fe-POP-3.

Fig. S14 a) On-off experiment and b) reaction progress curve for the oxidation of $\mathbf{4 a}$ to produce 5a in DMAc in the presence of $\mathbf{F e}$-POP-3.

Fig. S15 a) On-off experiment and b) reaction progress curve for the alkylation of $\mathbf{6 a}$ to produce $\mathbf{9 a}$ in DMF in the presence of $\mathbf{F e - P O P - 3}$.

Fig. S16 Proposed mechanism for the photocatalytic enantioselective α-alkylation of aldehydes $\mathbf{6 a - b}$ with bromides $\mathbf{7 a - d}$ for the formation of compounds $\mathbf{9 a} \mathbf{a}$ with polymer $\mathbf{F e}$ -POP-3 as heterogeneous catalyst.

$\stackrel{\aleph}{\mathrm{N}}$	$\begin{aligned} & \stackrel{\circ}{6} \\ & \hline 0 \end{aligned}$
$\stackrel{1}{1}$	$\stackrel{\sim}{\sim}$

Fig. S17 ${ }^{1} \mathrm{H}$ NMR of compound 2a in DMSO- d_{6}.

\qquad

Fig. S18 ${ }^{13} \mathrm{C}$ NMR of compound 2a in DMSO- d_{6}.

Fig. S19 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 c}$ in CDCl_{3}.

Fig. S20 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 d}$ in CDCl_{3}.

Fig. S21 ${ }^{1} \mathrm{H}$ NMR of compound $4 \mathrm{e}-3$ in CDCl_{3}.

Fig. S22 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 e}$ in CDCl_{3}.

Fig. S23 ${ }^{1} \mathrm{H}$ NMR of compound 5a in CDCl_{3}.

Fig. S24 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 b}$ in CDCl_{3}.

Fig. S25 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 c}$ in CDCl_{3}.

Fig. S26 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 d}$ in CDCl_{3}.

Fig. S27 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 e}$ in CDCl_{3}.
 ヘベハベヘNへへ

Fig．S28 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 f}$ in CDCl_{3} ．

5g

Fig．S29 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 g}$ in CDCl_{3} ．
$\underset{\text { R1S1-CDC13 }}{\text { H NMR/R1-1a }}$
 ú
\qquad

Fig. S30 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{9 a}$ in CDCl_{3}.

Fig. S31 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{9 b}$ in CDCl_{3}.

Fig. S32 ${ }^{1} \mathrm{H}$ NMR of compound $9 \mathbf{c}$ in CDCl_{3}.

Fig. S33 ${ }^{1} \mathrm{H}$ NMR of compound 9 d in CDCl_{3}.
Desktop．2021010801．fid
$6 \mathrm{~b}+7 \mathrm{a}$

Fig．S34 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{9 e}$ in CDCl_{3} ．

ハウパパパホN

9 f

Fig．S35 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{9 f}$ in CDCl_{3} ．

Fig. S36 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{9 g}$ in CDCl_{3}.

Fig. S37 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{9 h}$ in CDCl_{3}.

Fig. S38 The enantiomeric excess of 9a determined by chiral HPLC with IC column (hexane/isopropanol $=90 / 10$; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$).

Fig. S39 The enantiomeric excess of 9b determined by chiral HPLC with IC column (hexane/isopropanol $=95 / 5$; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$).

Fig. S40 The enantiomeric excess of 9c determined by chiral HPLC with IC column (hexane/iso38propanol $=90 / 10$; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$).

Fig. S41 The enantiomeric excess of 9d determined by chiral HPLC with IC column (hexane/isopropanol $=95 / 5$; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$).

LHK. 2020011502. fid

Fig. S42 The enantiomeric excess of $\mathbf{9 e}$ determined by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}.

Fig. S43 The enantiomeric excess of 9f determined by chiral HPLC with IC column (hexane/isopropanol $=95 / 5$; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$).

Fig. S44 The enantiomeric excess of $\mathbf{9 g}$ determined by chiral HPLC with IC column (hexane/isopropanol $=90 / 10$; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$).

\square

Fig. S45 The enantiomeric excess of 9 h determined by chiral HPLC with IC column (hexane/isopropanol $=95 / 5$; flow $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$).

