Electronic Supplementary Information (ESI)

Lattice Oxygen of PbO₂ Induces Crystal Facet Dependent Electrochemical Ozone Production

Wenbin Jiang[†], Shibin Wang[†], Jia Liu[†], Haiyang Zheng, Yu Gu, Wenwen Li,

Huaijie Shi, Suiqin Li, Xing Zhong*, Jianguo Wang*

Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032 China.

[†]W.B. Jiang, S.B. Wang and J. Liu contribute to this work equally

*Correspondence and requests for materials should be addressed to X.Z. (email: zhongx@zjut.edu.cn) or to J.G.W. (email: jgw@zjut.edu.cn).

Fig. S1. TEM image of the β -PbO₂-120 NRs.

Fig. S2. SEM image of the β -PbO₂-150 NRs.

Fig. S3. SEM image of the β -PbO₂-CM.

Table S1. The relative concentration of different Pb species based on XPS of the β -PbO₂-120 NRs, β -PbO₂-150 NRs and the β -PbO₂-CM.

C	Relative concentration of different Pb species (area %)			
Samples —	Pb ⁴⁺	Pb ⁰		
β-PbO ₂ NRs	79.89	20.10		
β-PbO ₂ -150 NRs	79.83	20.17		
β-PbO ₂ -CM	60.40	39.59		

Fig. S4. Cyclic voltammetry curves at various scan rates of the β -PbO₂-120 NRs at various scan rates of 20, 40, 60, 80, 100, and 120 mV/s in saturated K₂SO₄ solution.

Fig. S5. Cyclic voltammetry curves at various scan rates of the β -PbO₂-150 NRs at various scan rates of 20, 40, 60, 80, 100, and 120 mV/s in saturated K₂SO₄ solution.

Fig. S6. Cyclic voltammetry curves at various scan rates of the β -PbO₂-CM at various scan rates of 20, 40, 60, 80, 100, and 120 mV/s in saturated K₂SO₄ solution.

Table S2. Comparison of EOP performance for of the β -PbO₂-120 NRs, β -PbO₂-150 NRs and the β -PbO₂-CM.

Catalysts ^{a)}	Tafel Slope ^{b)} (mV/dec)	J _{0, geometric} ^{c)} (mA/cm ²)	C _{dl} (mF/cm ²)	Relative surface area	J _{0, normalized} (mA/cm ²)
β-PbO ₂ -120 NRs	1791.8	742.3	40.76	1.80	412.4
β-PbO ₂ -150 NRs	1515.2	411.5	21.22	0.93	440.2
β-PbO ₂ -CM	1561.4	493.2	22.70	1.00	493.2

a) All the parameters were measured under the same conditions. b) The higher current densities of Tafel slopes were taken to calculate. c) Exchange current densities (J_0) were obtained from Tafel curves by using extrapolation methods.

Fig. S7. TEM image of the β -PbO₂-120 NRs after EOP stability test for 50 h in the MEA electrolyzer.

Fig. S8. XRD patterns for the β -PbO₂-120 NRs and the β -PbO₂-120 NRs after EOP stability test for 50 h in the MEA electrolyzer.

Fig. S9. a) The photograph of the DEMS technique with mass spectra. b) The schematic illustration of the DEMS technique. c)The photograph of the electrolysis cell for DMES measurement.

Fig. S10. Optimized structures of the reaction intermediates in surface lattice oxygen coupling to O_2/O_3 on the PbO₂ (101) surface.

Fig. S11. Optimized structures of the reaction intermediates in surface lattice oxygen coupling to O_2/O_3 on the PbO₂ (110) surface.

Fig. S12. The free energy diagram (298K) and optimized structures for H_2O adsorption and dissociation on the PbO_2 (101) and the PbO_2 (110) surface.

Table S3. Calculated Gibbs reaction energies (ΔG_r) and energy barriers (ΔG_a) for elementary steps in surface lattice oxygen coupling to O₂/O₃ on the PbO₂ (101) and the PbO₂ (110) surface.

	ΔG_r (eV)	ΔG_a (eV)
(110): 3 $O_{latt}^* \rightarrow O^*$ (bri) + 2 $O_{latt}^* + O_v$	0.73	_
(110): O^* (bri) + 2 $O_{latt}^* + O_v \rightarrow O^*$ (top) + 2 $O_{latt}^* + O_v$	0.42	_
(110): $O^*(top) + 2 O_{latt}^* + O_v \rightarrow O_2^* + O_{latt}^* + 2 O_v$	-1.91	0.11
(110): $O_2^* + O_{latt}^* + 2 O_v \rightarrow O_3^* + 3 O_v$	0.19	0.92
(110): $O_2^* + O_{latt}^* + 2 O_v \rightarrow O_2 (gas) + O_{latt}^* + 2 O_v$	-1.08	_
(110): $O_3^* + 3 O_v + 2 O_v \rightarrow O_3 (gas) + 3 O_v$	1.15	_
(101): 3 $O_{latt}^* \rightarrow O_2^* + O_{latt}^* + 2 O_v$	-1.20	0.74
(101): $O_2^* + O_{latt}^* + 2 O_v \rightarrow O_2 (phys) + O_{latt}^* + 2 O_v$	-0.44	_
(101): O_2 (phys) + O_{latt} * + 2 $O_v \rightarrow O_3$ * (1) + 3 O_v	-0.05	0.41
(101): $O_3^*(1) + 3 O_v \rightarrow O_3^*(2) + 3 O_v$	-0.17	0.08
(101): $O_3^*(2) + 3 O_v \rightarrow O_3 (phys) + 3 O_v$	0.47	_
(101): O_3^* (phys) + 3 $O_v \rightarrow O_3$ (gas) + 3 O_v	-0.16	—
(101): O_2 (phys) + O_{latt} * + 2 $O_v \rightarrow O_2$ (gas) + O_{latt} * + 2 O_v	-0.40	_