Electronic Supplementary Information (ESI)

Lattice Oxygen of $\mathrm{PbO}_{\mathbf{2}}$ Induces Crystal Facet Dependent Electrochemical Ozone Production

Wenbin Jiang \dagger, Shibin Wang \dagger, Jia Liu \dagger, Haiyang Zheng, Yu Gu, Wenwen Li, Huaijie Shi, Suiqin Li, Xing Zhong*, Jianguo Wang*

Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032 China.
\dagger W.B. Jiang, S.B. Wang and J. Liu contribute to this work equally
*Correspondence and requests for materials should be addressed to X.Z. (email: zhongx@zjut.edu.cn) or to J.G.W. (email: jgw@zjut.edu.cn).

Fig. S1. TEM image of the $\beta-\mathrm{PbO}_{2}-120$ NRs.

Fig. S2. SEM image of the $\beta-\mathrm{PbO}_{2}-150$ NRs.

Fig. S3. SEM image of the $\beta-\mathrm{PbO}_{2}-\mathrm{CM}$.

Table S1. The relative concentration of different Pb species based on XPS of the β -$\mathrm{PbO}_{2}-120$ NRs, $\beta-\mathrm{PbO}_{2}-150$ NRs and the $\beta-\mathrm{PbO}_{2}-\mathrm{CM}$.

Samples	Relative concentration of different $\mathbf{P b}$ species (area \%)	
	$\mathbf{P b}^{\mathbf{4 +}}$	$\mathbf{P b}^{\mathbf{0}}$
$\boldsymbol{\beta}-\mathbf{P b O}_{\mathbf{2}} \mathbf{~ N R s}$	79.89	20.10
$\boldsymbol{\beta}-\mathbf{P b O}_{\mathbf{2}} \mathbf{- 1 5 0} \mathbf{~ N R s}$	79.83	20.17
$\boldsymbol{\beta}-\mathbf{P b O}_{\mathbf{2}} \mathbf{- C M}$	60.40	39.59

Fig. S4. Cyclic voltammetry curves at various scan rates of the $\beta-\mathrm{PbO}_{2}-120$ NRs at various scan rates of $20,40,60,80,100$, and $120 \mathrm{mV} / \mathrm{s}$ in saturated $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution.

Fig. S5. Cyclic voltammetry curves at various scan rates of the $\beta-\mathrm{PbO}_{2}-150$ NRs at various scan rates of $20,40,60,80,100$, and $120 \mathrm{mV} / \mathrm{s}$ in saturated $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution.

Fig. S6. Cyclic voltammetry curves at various scan rates of the $\beta-\mathrm{PbO}_{2}-\mathrm{CM}$ at various scan rates of $20,40,60,80,100$, and $120 \mathrm{mV} / \mathrm{s}$ in saturated $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution.

Table S2. Comparison of EOP performance for of the $\beta-\mathrm{PbO}_{2}-120 \mathrm{NRs}, \beta-\mathrm{PbO}_{2}-150$ NRs and the $\beta-\mathrm{PbO}_{2}-\mathrm{CM}$.

Catalysts ${ }^{\text {a }}$	$\begin{gathered} \text { Tafel Slope }^{\text {b }} \\ (\mathrm{mV} / \mathrm{dec}) \end{gathered}$	$\begin{gathered} \mathbf{J}_{0, \text { geometric }}{ }^{\mathrm{c})} \\ \left(\mathrm{mA} / \mathrm{cm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{dl}} \\ \left(\mathrm{mF} / \mathrm{cm}^{2}\right) \end{gathered}$	Relative surface area	$\mathbf{J}_{\mathbf{0}, \text { normalized }}$ ($\mathrm{mA} / \mathrm{cm}^{2}$)
$\boldsymbol{\beta - P b O} \mathbf{- 1 2 0}$ NRs	1791.8	742.3	40.76	1.80	412.4
$\boldsymbol{\beta}-\mathrm{PbO}_{\mathbf{2}} \mathbf{- 1 5 0} \mathbf{N R s}$	1515.2	411.5	21.22	0.93	440.2
$\boldsymbol{\beta}-\mathrm{PbO}_{2}-\mathrm{CM}$	1561.4	493.2	22.70	1.00	493.2

a) All the parameters were measured under the same conditions. b) The higher current densities of Tafel slopes were taken to calculate. c) Exchange current densities (J_{0}) were obtained from Tafel curves by using extrapolation methods.

Fig. S7. TEM image of the $\beta-\mathrm{PbO}_{2}-120$ NRs after EOP stability test for 50 h in the MEA electrolyzer.

Fig. S8. XRD patterns for the $\beta-\mathrm{PbO}_{2}-120$ NRs and the $\beta-\mathrm{PbO}_{2}-120$ NRs after EOP stability test for 50 h in the MEA electrolyzer.

Fig. S9. a) The photograph of the DEMS technique with mass spectra. b) The schematic illustration of the DEMS technique. c)The photograph of the electrolysis cell for DMES measurement.

Clean (101)

Int 4

Int 1

Int 5

Int 2

Fig. S10. Optimized structures of the reaction intermediates in surface lattice oxygen coupling to $\mathrm{O}_{2} / \mathrm{O}_{3}$ on the PbO_{2} (101) surface.

Int 1

Int 2

Int 3

Int 4

$2 \mathrm{O}_{\mathrm{v}}$

Fig. S11. Optimized structures of the reaction intermediates in surface lattice oxygen coupling to $\mathrm{O}_{2} / \mathrm{O}_{3}$ on the PbO_{2} (110) surface.

$\mathrm{H}_{2} \mathrm{O}$ *
$-0.10 \mathrm{eV}$

Fig. S12. The free energy diagram (298K) and optimized structures for $\mathrm{H}_{2} \mathrm{O}$ adsorption and dissociation on the PbO_{2} (101) and the $\mathrm{PbO}_{2}(110)$ surface.

Table S3. Calculated Gibbs reaction energies $\left(\Delta G_{r}\right)$ and energy barriers $\left(\Delta G_{a}\right)$ for elementary steps in surface lattice oxygen coupling to $\mathrm{O}_{2} / \mathrm{O}_{3}$ on the PbO_{2} (101) and the PbO_{2} (110) surface.

	$\Delta \mathrm{G}_{\mathrm{r}}(\mathrm{eV})$	$\Delta G_{a}(\mathrm{eV})$
(110): $3 \mathrm{O}_{\text {latt }}{ }^{*} \rightarrow \mathrm{O} *$ (bri) $+2 \mathrm{O}_{\text {latt }} *+\mathrm{O}_{\mathrm{v}}$	0.73	-
(110): O^{*} (bri) $+2 \mathrm{O}_{\text {latt }}{ }^{*}+\mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}^{*}$ (top) $+2 \mathrm{O}_{\text {latt }} *+\mathrm{O}_{\mathrm{v}}$	0.42	-
(110): $\mathrm{O} *$ (top) $+2 \mathrm{O}_{\text {latt }} *+\mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}_{2} *+\mathrm{O}_{\text {latt }} *+2 \mathrm{O}_{\mathrm{v}}$	-1.91	0.11
(110): $\mathrm{O}_{2}^{*}+\mathrm{O}_{\text {latt }}{ }^{*}+2 \mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}_{3}{ }^{*}+3 \mathrm{O}_{\mathrm{v}}$	0.19	0.92
(110): $\mathrm{O}_{2} *+\mathrm{O}_{\text {latt }} *+2 \mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}_{2}$ (gas) $+\mathrm{O}_{\text {latt }} *+2 \mathrm{O}_{\mathrm{v}}$	-1.08	-
(110): $\mathrm{O}_{3}{ }^{*}+3 \mathrm{O}_{\mathrm{v}}+2 \mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}_{3}$ (gas) $+3 \mathrm{O}_{\mathrm{v}}$	1.15	-
(101): $3 \mathrm{O}_{\text {latt }}{ }^{*} \rightarrow \mathrm{O}_{2}{ }^{*}+\mathrm{O}_{\text {latt }}{ }^{*}+2 \mathrm{O}_{\mathrm{v}}$	-1.20	0.74
(101): $\mathrm{O}_{2} *+\mathrm{O}_{\text {latt }}{ }^{*}+2 \mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}_{2}$ (phys) $+\mathrm{O}_{\text {latt }} *+2 \mathrm{O}_{\mathrm{v}}$	-0.44	-
(101): O_{2} (phys) $+\mathrm{O}_{\mathrm{latt}}{ }^{*}+2 \mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}_{3}{ }^{*}(1)+3 \mathrm{O}_{\mathrm{v}}$	-0.05	0.41
(101): $\mathrm{O}_{3}{ }^{*}(1)+3 \mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}_{3}{ }^{*}(2)+3 \mathrm{O}_{\mathrm{v}}$	-0.17	0.08
(101): $\mathrm{O}_{3}{ }^{*}(2)+3 \mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}_{3}$ (phys) $+3 \mathrm{O}_{\mathrm{v}}$	0.47	-
(101): $\mathrm{O}_{3} *$ (phys) $+3 \mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}_{3}$ (gas) $+3 \mathrm{O}_{\mathrm{v}}$	-0.16	-
(101): O_{2} (phys) $+\mathrm{O}_{\text {latt }} *+2 \mathrm{O}_{\mathrm{v}} \rightarrow \mathrm{O}_{2}$ (gas) $+\mathrm{O}_{\text {latt }} *+2 \mathrm{O}_{\mathrm{v}}$	-0.40	-

