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1. Experimental Procedures

1.1 Characterizations

Nitrogen sorption isotherms at the temperature of liquid nitrogen were performed on a
Quantachrome Autosorb-1 system. The samples were degassed for 12 h at 393 K before test. The
specific surface areas were calculated from the adsorption data using Brunauer—Emmett—Teller
(BET) methods. The pore size distribution curves were obtained from the adsorption branches using
the non-local density functional theory (NLDFT) method.

Thermogravimetric analysis (TGA) was carried out using a thermal analyzer (NETZSCH STA
449 F3), the samples were heated at a rate of 10 K min™! from 313 K to 973 K under a nitrogen
atmosphere.

Transmission electron microscopy (TEM) was performed using a JEM-2100 with an
accelerating voltage of 200 kV. Scanning electron microscopy (SEM) was performed using a JSM-
7800 F.

Solid-state 3'P MAS NMR experiments were recorded on a VARIAN Infinity plus spectrometer
equipped with a 2.5 mm probe at a frequency of 161.8 MHz. The experiments were recorded under
a magic angle spinning rate of 10 kHz and a delay of 3.0 s. Solid-state 3'P NMR chemical shifts
were referenced to 85% H3;PO4. '3C MAS NMR spectra were obtained under a magic angle
spinning rate of 6 kHz.

XPS was conducted using a Thermo Scientific instrument and the spectrometer binding energy
was calibrated through the reference C 1s (284.6 eV).

The FT-IR facility for characterizing the catalytic performance of Rh/3vPPh;-POLs in
hydroformylation reactions consisted of an in-situ cell. The gaseous feeds, recirculating cooling
water system, temperature controller and vacuum pump were connected to the in-situ cell. In situ
FT-IR spectra were collected on a Fourier transform infrared spectrometer (Thermo Scientific
Nicolet 1S50) equipped with an in-situ cell accessory for testing all the samples. The MCT/A was
used as detector. All spectra were collected with a resolution of 4 cm™' and accumulation of 32
scans. The ZnSe windows were installed in separate stainless-steel housings. As a typical run, the
sample (About 10 mg) was pressed into sample vessel (diameter: 13 mm) and then loaded into the
in-situ cell. Then the in-situ cell was sealed and purged with nitrogen for 30 min. Later, switch on

the recirculating cooling water supply and regulate the temperature controller to 383 K. The
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background spectrum was collected after heat to 383 K for 60 min in a flow of N,. Subsequently, a
syngas (CO/H, = 1:1, 0.1 MPa) was purged into the in-situ cell for 60 min. After 60 min of
adsorption, the cell was purged under N,. The real-time FTIR spectrum data was collected every 5
min until the spectrogram was unchanged.

Rh K-edge X-ray absorption fine structure (EXAFS and XANES) spectra of the prepared
samples were obtained at the BLI4W1 beamline of SSRF, SINAP (Shanghai, China) with the use
of a Si (311) crystal monochromator. The storage ring was operated at 3.5 GeV with injection
currents of 200 mA. Pd foil was used as standard sample, and the X-ray absorption spectra were
measured in the transmission mode. All spectra of the prepared Rh/3vPPh;-POLs were tested in the
fluorescence mode. The raw data were energy-calibrated at 23220 eV, first inflection point,
background-corrected, and normalized using the IFEFFIT software. Fourier transformation of the
EXAFS data was applied to the i3-weighted functions. For the curve-fitting analysis, Rh-C and Rh-
P path parameters were obtained from the ab initio multiple scattering codes FFEF6.

Inductively coupled plasma (ICP) was measured on an ICPS-8100 apparatus.



2. Supporting Tables

Table S1 Hydroformylation of 1-octene using different samples

Conversion Aldehydes selectivity Iso-alkenes selectivity ~ Alkane selectivity
Samples 1/b ratio
(%) (o) (%) (%)
Rh(CO);(acac)? 99 8.5 74.7 16.8 0.6
Rh-p-3vPPh; 99 89.0 9.7 1.3 2.9
Rh-m-3vPPh;39 98 93.1 6.2 0.7 4.0
Rh-0-3vPPh;9 99 92.8 6.9 0.3 4.9
Rh/p-3vPPh3;-POL 98 65.5 21.7 12.8 3.0
Rh/m-3vPPh;-POL 99 88.6 10.4 1.0 10.1
Rh/0-3vPPh;-POL 99 47.1 49.8 3.1 23

Reaction conditions: 0.060 g catalyst (Rh loading at 0.25 %), S/C=6000, toluene (5.0 g), 383 K, 1 MPa for 12 h. Syngas: CO:H,=1:1.  0.95 mg
Rh(CO),(acac); » 0.95 mg Rh(CO),(acac)+59.62 mg of p-3vPPh;, © 0.95 mg Rh(CO),(acac)+59.62 mg of m-3vPPh;, S/C=6000. 9 0.95 mg

Rh(CO),(acac)+59.62 mg of 0-3vPPh;, S/C=6000.



Table S2 The influence of syngas pressure on hydroformylation of 1-octene by Rh/m-3vPPh;-POL

Pressure Conversion Aldehydes selectivity Iso-alkenes selectivity Alkane selectivity

1/b ratio
(MPa) (%) (%0) (%) (%0)
0.5 92 83.2 13.7 3.1 15.7
1.0 99 88.6 10.4 1.0 10.1
1.5 95 89.5 7.6 2.9 10.0
2.0 94 90.9 6.7 2.4 8.1

Reaction conditions: 0.060 g Rh/m-3vPPh;-POL catalyst (Rh loading at 0.25%), S/C=6000, toluene (5.0 g), 383 K for 12 h. Syngas: CO:H,=1:1.



Table S3 The influence of temperature on hydroformylation of 1-octene by Rh/m-3vPPh;-POL catalyst

Temperature Conversion Aldehydes selectivity  Iso-alkenes selectivity — Alkane selectivity

1/b ratio
(K) (%) (%) (%) (%)
373 78 92.5 5.3 2.2 9.0
383 99 88.6 10.4 1.0 10.1
393 97 82.8 13.6 3.6 13.3
403 98 71.7 22.1 6.2 11.5

Reaction conditions: 0.060 g Rh/m-3vPPh;-POL catalyst (Rh loading at 0.25%), S/C=6000, toluene (5.0 g), IMPa for 12 h. Syngas: CO:H,=1:1.



Table S4 Turnover frequency (TOF) of Rh/m-3vPPh;-POL

Conversion Aldehydes selectivity iso-alkenes selectivity Alkane selectivity

1/b TOF (h!)
(%) (%) (%0) (%)
24 87.4 4.1 8.5 13.3 2221.6

Reaction conditions: 0.060 g catalyst (Rh loading at 0.25 %), S/C=6000, toluene (5.0 g), 383 K, 1 MPa for 40 min. Syngas: CO:H,=1:1.
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3. Supporting Figures
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Fig. S1 NMR spectra of p-3vPPhs, m-3vPPh; and 0-3vPPh;

12



Fig. S2 (a) The SEM image of Rh/m-3vPPh;-POL; (b) The SEM image of used Rh/m-3vPPh;-POL;
(c) The TEM image of Rh/m-3vPPh;-POL; (d) The TEM image of used Rh/m-3vPPh;-POL; (e) The
HADDF-STEM and HADDF-EDS element maps images of Rh/m-3vPPh;-POL; (f) The HADDF-

STEM and HADDF-EDS element maps images of used Rh/m-3vPPh;-POL.
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Fig. S3 The P2p XPS spectra of PPh3-POLs and corresponding Rh/PPh3;-POLs. (a) p-3vPPh;-POL,
(b) 0.25wt% Rh/p-3vPPh;-POL, (¢) m-3vPPh3-POL, (d) 0.25wt% Rh/m-3vPPh;-POL, (e) o-

3vPPh;-POL, (f) 0.25wt% Rh/0-3vPPh;-POL.
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4. Supporting Scheme
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Scheme S1 Flow chart of hydroformylation of 1-octene in a fixed-bed reactor.
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