Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Heterojunction TiO₂@TiOF₂ Nanosheets as Superior Anode Materials for Sodium-ion

Batteries

Shoujie Guan^{a, 1}, Qinglu Fan^{a, 1}, Zhichuan Shen^a, Yuling Zhao^b, Yang Sun^{b,*}, Zhicong Shi^{a, **}

^a Smart Energy Research Centre, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.

^b School of Materials, Sun Yat-sen University, Guangzhou 510006, China.

*Corresponding author.

**Corresponding author.

E-mail addresses: sunyang5@mail.sysu.edu.cn (Y. Sun), zhicong@gdut.edu.cn (Z. Shi).

¹ These authors contributed equally to this work.

Figure S1. The photo of prepared samples.

Figure S2. SEM images of $TiO_2@TiOF_2-24h$ (a), $TiO_2@TiOF_2-30h$ (b), and $TiO_2@TiOF_2-36h$ samples (c, d).

Figure S3. SEM image of TiOF₂ sample.

Figure S4. XRD patterns for prepared samples (a); XRD patterns with the corresponding Rietveld refinement for the $TiO_2@TiOF_2-24h$ (b) and $TiO_2@TiOF_2-36h$ (c) samples.

Figure S5. Nitrogen adsorption/desorption isotherms of $TiO_2@TiOF_2-24h$ (a), $TiO_2@TiOF_2-36h$ samples (b); The insets showing the corresponding Barrett-Joyner-Halenda (BJH) pore size distribution curves.

Figure S6. Raman spectra of $TiOF_2$ sample (a); XPS survey spectra of $TiO_2@TiOF_2$ samples (b); High-resolution XPS spectra of Ti 2p for TiO_2 and $TiOF_2$ samples (c) and O 1s for $TiO_2@TiOF_2$ -24h, $TiO_2@TiOF_2$ -30h and $TiO_2@TiOF_2$ -36h samples (d).

Figure S7. Galvanostatic charge/discharge profiles of the five samples as indicated for the first cycle at 50 mA g^{-1} (a); Rate performance of TiO₂ and TiOF₂ physical mixture (b) and the corresponding cyclic stability (c) at current density of 500 mA g^{-1} .

Figure S8. CV curves of $TiO_2@TiOF_2-24h$ (a) and $TiO_2@TiOF_2-36h$ (b) samples during the initial 4 cycles.

Figure S9. CV curves at different scan rates from 0.3 to 2.0 mV s⁻¹ for TiO₂@TiOF₂-24h (a) and TiO₂@TiOF₂-36h (b) samples.

Figure S10. EIS data for the five samples as indicated, the inset picture showing the equivalent circuit for the impedance spectra.

Figure S11. XPS survey spectra of TiO₂@TiOF₂-30h sample after 10 cycles (charge to 3 V).

Figure S12. Projected DOS on each atomic species of the $TiO_2@TiOF_2$ heterojunction (a); Projected DOS on different regions of the $TiO_2@TiOF_2$ heterojunction (b).

Samples	TiO ₂ @TiOF ₂ -30h	TiO ₂ @TiOF ₂ -24h	TiO ₂ @TiOF ₂ -36h	TiO ₂	TiOF ₂
$Rs (\Omega \text{ cm}^{-2})$	3.831	4.899	4.433	4.944	6.061
$R_{sf}(\Omega \text{ cm}^{-2})$	170.9	325.6	242.7	345.6	463.9
$R_{ct} (\Omega \text{ cm}^{-2})$	317.0	415.1	395.2	454.4	530.8

Table S1 Impedance parameters of the fitting equivalent circuit.

Experimental details

Electrochemical impedance fitting

The equivalent circuit for the impedance spectra includes two series connected (parallel RC circuit) and a Warburg impedance element, which is used to fit the EIS results. *Rs* element symbolizing internal resistance is at the initial point, R_{sf} and *CPE1* elements symbolizing the Na⁺ migration through the surface film of the anode materials are at the semicircle of high frequency. The another semicircle at medium frequency represents the charge transfer process including R_{ct} and *CPE2* elements, the Warburg impedance (*Wo*) element symbolizing the Na⁺ diffusion in anode material is at the slope line.¹

References

 D. Yan, C. Yu, Y. Bai, W. Zhang, T. Chen, B. Hu, Z. Sun and L. Pan, *Chem. Commun.*, 2015, **51**, 8261-8264.