Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary information

<u>**Title:**</u> NO_x reduction consequences of lanthanide-substituted vanadates functionalized with S or P poisons under oxidative environments^{\dagger}

<u>Authors</u>: Hyo Jin An,[‡] Dong Ho Kim,[‡] Heon Phil Ha,^{*} and Jongsik Kim^{*}

‡ These authors are contributed equally to this work.

Table of Contents

Table S1-S4	
Fig. S1-S18	

Table S1. Logarithmic acid dissociation (pK_A) and base association constants (pK_B) of HSO_A⁻/SO_A²⁻ (A= 3 or 4) and H_{3-B}PO4^{B-} species (B= 1, 2, or 3).

chemical equilibrium ^a	pK _A ^b	р <i>К</i> в ^{<i>b</i>}
$H_2PO_4^- + H^+ \neq H_3PO_4$	2.1	11.9
$HPO_4^{2-} + H^+ \rightleftharpoons H_2PO_4^{-}$	7.2	6.8
PO ₄ ³⁻ + H ⁺ ₹ HPO ₄ ²⁻	12.3	1.7
$HSO_4^- + H^+ \rightleftharpoons H_2SO_4$	-3	17.0
$SO_4^{2-} + H^+ \rightleftharpoons HSO_4^{-}$	1.9	12.1
$HSO_3^- + H^+ \rightleftharpoons H_2SO_3$	1.8	12.2
$SO_3^{2-} + H^+ \rightleftharpoons HSO_3^-$	7.2	6.8

^{*a*} at 25 °C and 1 bar. ^{*b*} $pK_W = pK_A + pK_B$, where K_W is self-ionization constant of H₂O.

$a = \frac{1}{2} a = \frac{1}{2}$		$V_{BJH} a (cm^3 g_{CAT}^{-1}) -$	RM/V ^b		S (or P)/(RM+V) ^b	
Caldiyst SBET (III2 gCAT)	bulk ^{c, d}		surface ^e	bulk ^d	surface ^e	
Ce-S	64.97	0.25	1.01 (± 0.03)	0.97 (± 0.01)	0.42 (± 0.05)	0.52 (± 0.01)
Nd-S	68.51	0.21	1.01 (± 0.03)	1.07 (± 0.01)	0.44 (± 0.06)	0.52 (± 0.01)
Sm-S	64.51	0.29	1.04 (± 0.03)	1.00 (± 0.01)	0.39 (± 0.05)	0.49 (± 0.01)
Gd-S	68.91	0.26	0.98 (± 0.02)	1.07 (± 0.01)	0.41 (± 0.06)	0.50 (± 0.01)
Tb-S	67.59	0.27	1.02 (± 0.04)	0.99 (± 0.01)	0.40 (± 0.06)	0.51 (± 0.01)
Er-S	63.03	0.30	1.02 (± 0.03)	1.01 (± 0.01)	0.38 (± 0.05)	0.50 (± 0.01)
Ce-P	68.84	0.25	1.02 (± 0.02)	1.01 (± 0.02)	0.51 (± 0.07)	0.59 (± 0.01)
Nd-P	72.11	0.19	1.02 (± 0.03)	0.98 (± 0.07)	0.51 (± 0.07)	0.60 (± 0.03)
Sm-P	73.65	0.29	0.99 (± 0.03)	0.94 (± 0.02)	0.50 (± 0.06)	0.58 (± 0.04)
Gd-P	70.74	0.26	0.96 (± 0.03)	1.00 (± 0.02)	0.53 (± 0.07)	0.60 (± 0.05)
Tb-P	66.15	0.25	0.99 (± 0.03)	0.99 (± 0.02)	0.52 (± 0.06)	0.60 (± 0.02)
Er-P	68.15	0.30	1.00 (± 0.03)	0.99 (± 0.02)	0.59 (± 0.08)	0.60 (± 0.08)

Table S2. Properties of the catalysts.

^{*a*} via N₂ physisorption. ^{*b*} molar ratio. ^{*c*} bulk V contents of ~ 2wt. %. ^{*d*} via XRF. ^{*e*} via XP spectroscopy.

Table S3. Peak locations of the sub-bands assigned as surface V^{3+} , V^{4+} , or V^{5+} species in the XP spectra of the catalysts.

catalyst	Tb-S	Ce-S	Nd-S	Sm-S	Gd-S	Er-S
V ^{3+ a, c} (eV)	515.20	515.25	515.31	515.36	515.42	515.50
V ^{4+ a, c} (eV)	516.08	516.13	516.18	516.24	516.30	516.40
V ^{5+ a, c} (eV)	516.86	516.92	516.98	517.06	517.12	517.20
catalyst	Tb-P	Ce-P	Nd-P	Sm-P	Gd-P	Er-P
V ^{3+ <i>b, c</i>} (eV)	515.15	515.21	515.27	515.33	515.40	515.45
V ^{4+ <i>b, c</i>} (eV)	516.00	516.05	516.11	516.17	516.26	516.35
V ^{5+ b, c} (eV)	516.80	516.84	516.93	517.00	517.08	517.15

 $^{\it a}$ See Fig. S3A†. $^{\it b}$ See Fig. S3B†. $^{\it c}$ peak resolution of 0.05 eV.

hand	slope of the fitting ^a					
band -	Tb-S ^c	Ce-S ^c	Nd-S ^c	Sm-S ^d	Gd-S ^d	Er-S ^d
marked with • ^b	-3841.3	-5007.8	-4306.3	-3812.4	-4558.7	-4037.6
marked with • b	-3919.7	-5186.1	-4270.2	-3930.6	-4575.4	-4156.1
marked with • b	-3931.3	-5139.1	-4362.7	-3936.5	-4459.7	-4061.1
hand —	slope of the fitting ^a					
band	Tb-P ^e	Ce-P ^e	Nd-P ^e	Sm-P ^f	Gd-P ^f	Er-P ^f
marked with • ^b	-3777.2	-5009.6	-4177.4	-3892.0	-4438.3	-4006.5
marked with • ^b	-3726.4	-5080.7	-4257.4	-3820.6	-4416.3	-4040.3
marked with \bullet ^b	-3735.9	-5031.0	-4264.4	-3824.5	-4448.9	-4011.3
	NH ₃ -TPD	profiles post the s	aturation of the s	surfaces with NH_3	at 350 °C	
band –	slope of the fitting ^a					
	Tb-S ^g	Ce-S ^g	Nd-S ^g	Sm-S ^h	Gd-S ^h	Er-S ^h
marked with • ^b	-2828.6	-4241.4	-3445.4	-2806.9	-3681.9	-3288.4
marked with • ^b	-2786.2	-4193.6	-3370.9	-2930.3	-3469.1	-3275.0
band –			slope of	the fitting ^{<i>a</i>}		
	Tb-P ⁱ	Ce-P ⁱ	Nd-P ⁱ	Sm-P ^j	Gd-P ^j	Er-P ^j
marked with • b	-2560.4	-3758.5	-2903.2	-2784.3	-3344.9	-2659.7
marked with • b	-2476.4	-3746.0	-2920.8	-2743.2	-3378.9	-2619.3

Table S4. Slopes of the fittings used to calculate NH_3 binding energies (E_{NH3}) for the catalysts.

 $\rm NH_3\text{-}TPD$ profiles post the saturation of the surfaces with $\rm NH_3$ at 250 $^\circ C$

^{*a*} use of peak temperatures (T_M) obtained through NH₃-TPD experiments at the ramping rates (β) of 10 °C min⁻¹, 20 °C min⁻¹, and 30 °C min⁻¹; regression factors (R²) of \geq 0.99. ^{*b*} peak temperature (T_M). ^{*c*} See Fig. S7 and S15A[†]. ^{*d*} See Fig. S8 and S15A[†]. ^{*e*} See Fig. S9 and S15B[†]. ^{*f*} See Fig. S10 and S15B[†]. ^{*g*} See Fig. S11 and S15C[†]. ^{*h*} See Fig. S12 and S15C[†]. ^{*i*} See Fig. S13 and S15D[†]. ^{*j*} See Fig. S14 and S15D[†].

Fig. S1. HRTEM images of the catalysts.

Fig. S2. (A-F) SAED patterns of the RM-F catalysts. Green dashed circles indicate the surface facets indexed to those of *tetragonal* anatase (TiO₂, JCPDF No. of 01-084-1285), whereas yellow dashed circles indicate the surface facets assigned to those of *tetragonal* RMVO₄ (JCPDF No. of 01-072-0282 for CeVO₄; 01-072-0280 for NdVO₄; 01-072-0279 for SmVO₄; 01-072-0277 for GdVO₄; 01-072-0276 for TbVO₄; 01-072-0337 for ErVO₄). (G) XRD patterns of the RM-F catalysts. Black solid circles denote the bulk facets indigenous to *tetragonal* anatase. Domain highlighted with sky-blue indicates the bulk (112) reflections of *tetragonal* RMVO₄ phases, whose 20 values and crystallite sizes are also specified.

Fig. S3. XP spectra of (A) the RM-S and (B) RM-P catalysts in the V 2p $_{3/2}$ regions. Grey solid lines denote raw spectra, whereas black empty and cyan solid circles indicate fitted spectra and backgrounds, respectively. Red, green, and blue solid circles indicate the sub-bands assigned to surface V³⁺, V⁴⁺, and V⁵⁺ species, respectively.

Fig. S4. NH₃-TPD profiles (NH₃ signal versus temperature) of the catalysts after the saturation of their surfaces with NH₃ at 35 °C (RM-F for (A); RM-S for (B); RM-P for (C)).

Fig. S5. CO isotherms of the catalysts measured at -20 °C (RM-F for (A); RM-S for (B); RM-P for (C)).

Fig. S6. Background-subtracted *in situ* DRIFT spectra of (A) the RM-S and (B) RM-P catalysts after the exposure of their surfaces to the following feed gas streams at 280 °C: 1,000 ppm NO/3 vol. % O₂ for 30 minutes (denoted as $N_2/NO/O_2$) \rightarrow 1,000 ppm NH₃ for 30 minutes (denoted as N_2/NH_3) \rightarrow $N_2/NO/O_2$, throughout which N₂ served as a balance gas, whereas the total flow rate was 200 mL min⁻¹. *NO₂⁻/NO₃⁻* denotes vibrational signals of N-O bonds belonging to NO_2^-/NO_3^- species bound to the surfaces. *B* and *L* denote symmetric (*sym*) or asymmetric (*ASYM*) bending vibrational signals of N-H bonds belonging to NH₃ species coordinated to surface Brönsted acidic and Lewis acidic sites, respectively.

Fig. S7. NH₃-TPD profiles (NH₃ signal versus temperature) of Tb-S (A, D, and G), Ce-S (B, E, and H), and Nd-S (C, F, and I) after the saturation of their surfaces with NH₃ at 250 °C with the use of various ramping rates (β) of 10 °C min⁻¹ (A-C), 20 °C min⁻¹ (D-F), and 30 °C min⁻¹ (G-I). Inset tables display the temperatures of the peaks for the sub-bands (denoted as T_M) obtained from the deconvolution of the NH₃-TPD profiles. (See solid circles marked with red, green, and blue for details.)

Fig. S8. NH₃-TPD profiles (NH₃ signal versus temperature) of Sm-S (A, D, and G), Gd-S (B, E, and H), and Er-S (C, F, and I) after the saturation of their surfaces with NH₃ at 250 °C with the use of various ramping rates (β) of 10 °C min⁻¹ (A-C), 20 °C min⁻¹ (D-F), and 30 °C min⁻¹ (G-I). Inset tables display the temperatures of the peaks for the sub-bands (denoted as T_M) obtained from the deconvolution of the NH₃-TPD profiles. (See solid circles marked with red, green, and blue for details.)

Fig. S9. NH₃-TPD profiles (NH₃ signal versus temperature) of Tb-P (A, D, and G), Ce-P (B, E, and H), and Nd-P (C, F, and I) after the saturation of their surfaces with NH₃ at 250 °C with the use of various ramping rates (β) of 10 °C min⁻¹ (A-C), 20 °C min⁻¹ (D-F), and 30 °C min⁻¹ (G-I). Inset tables display the temperatures of the peaks for the sub-bands (denoted as T_M) obtained from the deconvolution of the NH₃-TPD profiles. (See solid circles marked with red, green, and blue for details.)

Fig. S10. NH₃-TPD profiles (NH₃ signal versus temperature) of Sm-P (A, D, and G), Gd-P (B, E, and H), and Er-P (C, F, and I) after the saturation of their surfaces with NH₃ at 250 °C with the use of various ramping rates (β) of 10 °C min⁻¹ (A-C), 20 °C min⁻¹ (D-F), and 30 °C min⁻¹ (G-I). Inset tables display the temperatures of the peaks for the sub-bands (denoted as T_M) obtained from the deconvolution of the NH₃-TPD profiles. (See solid circles marked with red, green, and blue for details.)

Fig. S11. NH₃-TPD profiles (NH₃ signal versus temperature) of Tb-S (A, D, and G), Ce-S (B, E, and H), and Nd-S (C, F, and I) after the saturation of their surfaces with NH₃ at 350 °C with the use of various ramping rates (β) of 10 °C min⁻¹ (A-C), 20 °C min⁻¹ (D-F), and 30 °C min⁻¹ (G-I). Inset tables display the temperatures of the peaks for the sub-bands (denoted as T_M) obtained from the deconvolution of the NH₃-TPD profiles. (See solid circles marked with red and green for details.)

Fig. S12. NH₃-TPD profiles (NH₃ signal versus temperature) of Sm-S (A, D, and G), Gd-S (B, E, and H), and Er-S (C, F, and I) after the saturation of their surfaces with NH₃ at 350 °C with the use of various ramping rates (β) of 10 °C min⁻¹ (A-C), 20 °C min⁻¹ (D-F), and 30 °C min⁻¹ (G-I). Inset tables display the temperatures of the peaks for the sub-bands (denoted as T_M) obtained from the deconvolution of the NH₃-TPD profiles. (See solid circles marked with red and green for details.)

Fig. S13. NH₃-TPD profiles (NH₃ signal versus temperature) of Tb-P (A, D, and G), Ce-P (B, E, and H), and Nd-P (C, F, and I) after the saturation of their surfaces with NH₃ at 350 °C with the use of various ramping rates (β) of 10 °C min⁻¹ (A-C), 20 °C min⁻¹ (D-F), and 30 °C min⁻¹ (G-I). Inset tables display the temperatures of the peaks for the sub-bands (denoted as T_M) obtained from the deconvolution of the NH₃-TPD profiles. (See solid circles marked with red and green for details.)

Fig. S14. NH₃-TPD profiles (NH₃ signal versus temperature) of Sm-P (A, D, and G), Gd-P (B, E, and H), and Er-P (C, F, and I) after the saturation of their surfaces with NH₃ at 350 °C with the use of various ramping rates (β) of 10 °C min⁻¹ (A-C), 20 °C min⁻¹ (D-F), and 30 °C min⁻¹ (G-I). Inset tables display the temperatures of the peaks for the sub-bands (denoted as T_M) obtained from the deconvolution of the NH₃-TPD profiles. (See solid circles marked with red and green for details.)

Fig. S15. Profiles of In (β/T_M^2) versus $(1/T_M)$ for the RM-S (A and C) and RM-P catalysts (B and D). β denotes the ramping rate (10-30 °C min⁻¹) utilized for the NH₃-TPD experiments at ≥ 250 °C (A and B) or ≥ 350 °C (C and D), whereas T_M indicates the peak temperature of the sub-bands obtained through the deconvolution of the NH₃-TPD profiles. Violet dashed lines are the fittings (regression factors (R²) of ≥ 0.99) with the slopes of -(E_{NH3}/R) values, where E_{NH3} and R indicate NH₃ binding energy and ideal gas constant, respectively.

Fig. S16. H₂-TPR profiles (H₂ consumption signal versus temperature) of the catalysts at \geq 50 °C (RM-F for (A); RM-S for (B); RM-P for (C)). The temperatures shown in (B) and (C) indicate the onsets, at which the catalysts initiated H₂ consumption.

Fig. S17. (A) SO₂-TPD profiles (SO₂ signal versus temperature) of the Ce-S and Ce-P after the saturation of their surfaces with SO₂ at 250 °C (denoted as Ce-S (exposed to SO₂) and Ce-P (exposed to SO₂)). N₂-TPD profile of the Ce-S unsubjected to the saturation of its surface with SO₂ at 250 °C (denoted as Ce-S (pyrolysis)). (B) NH₃-TPD profiles (NH₃ signal versus temperature) of the Gd-S, Gd-P, and their analogues exposed to 500 ppm SO₂/3 vol. % O₂/N₂ with the space velocity of 30,000 hr⁻¹ and the total flow rate of 500 mL min⁻¹ at 250 °C for 10 hours. Inset table exhibits the amounts of NH₃ adsorbed per gram of catalysts with NH₃ adsorption temperature of 250 °C.

Fig. S18. TGA and DTG profiles of (A) the Ce-S/Ce-P and (B) Gd-S/Gd-P, all of which were exposed to a N₂-balanced flue gas stream consisting of NO_x (800 ppm), NH₃ (800 ppm), O₂ (3 vol. %), H₂O (6 vol. %), and SO₂ (500 ppm) with the space velocity of 60,000 hr⁻¹ and the total flow rate of 500 mL min⁻¹ at 180 °C for 24 hours.