Electronic Supplementary Information

Novel cobalt-doped molybdenum oxynitride quantum dots@N-doped carbon nanosheets with abundant oxygen vacancies for long-life rechargeable zinc-air batteries

Thanh Tuan Nguyen,^{ab} Jayaraman Balamurugan,^a Kin-Tak Lau,^b Nam Hoon Kim,*^a Joong Hee Lee*^{ac}

^aAdvanced Materials Institute of Nano Convergence Technology (BK21 Four) & Dept. of Nano Convergence Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.

^bFaculty of Science, Engineering and Technology, Swinburne University of Technology, John St., Hawthorn, Melbourne, VIC, 3122, Australia.

^cCarbon Composite Research Centre, Department of Polymer - Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.

E-mail: nhk@jbnu.ac.kr; jhl@jbnu.ac.kr

1. Calculations

The RDE and RRDE measurements were carried out at different rotational speeds from 400 to 2800 rpm (400 rpm for each step) in an O₂-saturated 0.1 M KOH electrolyte. The number of electrons transferred in ORR was calculated from the Koutecky-Levich formula:¹

$$\frac{1}{j_L} = \frac{1}{j_K} + \left(\frac{1}{0.62nFCD^{2/3}v^{-1/6}}\right)\omega^{-1/2}$$
(1)

where j_K is kinetic current density, *n* is the number of electron transfer, *F* is the Faraday constant (96,485 C mol⁻¹), *C* is the concentration of oxygen in the electrolyte (1.2 × 10⁻⁶ mol cm⁻³), *D* is the diffusion coefficient of oxygen in the solution (1.9 × 10⁻⁵ cm² s⁻¹), *v* is the dynamic viscosity of the aqueous 0.1 M KOH electrolyte (0.01 cm² s⁻¹), and ω is rotational speed.

The RRDE measurement was exemplified to investigate the 4 e⁻ sensitivity. The H_2O_2 yield and electron transfer (*n*) were calculated by the following equations:¹

$$n = \frac{4j_D}{j_D + \frac{j_R}{N}}$$

$$H_2 O_2 \text{ yield (\%)} = \frac{\frac{2j_R}{N}}{j_D + \frac{j_R}{N}} \times 100$$
(2)
(3)

where j_D and j_R is the Faradaic current on the disk and ring, respectively. N is the H₂O₂ collection coefficient of the ring (0.37).

Fig. S1. The XRD patterns of Vo-CMON@NCN with different pyrolysis temperature

Fig. S2. SEM and HR-TEM images of (a, b) V_0-CMON@NCN-700 and (c, d) V_0-

CMON@NCN-900.

Fig. S3. SEM-EDS color mapping analysis of V₀-CMON-800@NCN and corresponding elemental distributions of Co, Mo, O, N, and C.

Fig. S4. The TGA of all materials with different pyrolysis temperature from 700 to 900 °C

Fig. S5. AFM images for the (a) V_0 -CMON@NCN-700; (b) V_0 -CMON@NCN-800, and (c) V_0 -CMON@NCN-900 nanohybrids.

Fig. S6. (a) XPS survey and high-resolution XPS of (b) Co 2p, (c) Mo 3d, (d) O 1s, (e) N 1s + Mo 3p, (f) C 1s for (i) V_O-CMON@NCN-700 and (ii) V_O-CMON@NCN-900 nanohybrids.

Fig. S7. The percentage of pyrrolic N, pyridinic N, graphitic N, oxidized N and Me-N in all catalyst materials.

Fig. S8. BET of Vo-CMON@NCN-700; TGA Vo-CMON@NCN-900

Fig. S9. The CV curves of V_0 -CMON@NCN-800 at a fixed scan rate of 50 mV s⁻¹ in N₂ and O₂-saturated 0.1 M KOH electrolyte.

Fig. S10. LSV at different rotation speed from 400 to 2800 rpm of (a) V₀-CMON@NCN-700,
(b) V₀-CMON@NCN-900, (c) Pure V₀-MON@NCN-800, and Pt/C.

Fig. S11. Methanol-tolerance evaluation of V_0 -CMON@NCN-800 and Pt/C in O_2 -saturated 0.1 m KOH solution.

·

Fig. S12. Long-term stability of V_0 -CMN@NCN-800 and Pt/C catalyst after 40 h.

Fig. S13. LSV of V₀-CMON@NCN-800 and Pt/C at 1600 rpm before and after 10000 CV cycles

Fig. S14. SEM and TEM images of V_0 -CMON@NCN-800 catalyst after 10000 CV cycles

ORR stability test.

Fig. S15. XPS of V₀-CMON@NCN-800 catalyst after 10000 CV cycles ORR stability test.

Fig. S16. Tafel plots of as-obtained catalysts toward OER measurement.

Fig. S17. CV curves of V₀-CMON@NCN-800 at different sweep rate of 10 to 100 mV s⁻¹.

Fig. S18. TOF at the overpotential of 260 mV for the (I) RuO₂, (II) V₀-CMON@NCN-700, (III) V₀-CMON@NCN-800, (IV) V₀-CMON@NCN-900, and (V) V₀-MON@NCN-800 catalysts.

Fig. S19. Long-term stability of V_0 -CMON@NCN-800 and RuO₂ catalyst after 40 h.

Fig. S20. LSV curves of V_0 -CMON@NCN-800 before and after 10000 CV cycles.

Fig. S21. Cycle stability of ZABs at a high current density of 20 mA cm⁻² and a series-connected ZABs powered a red LED.

Somulas	Co	Мо	N	O [wt%]	C
Samples	[wt%]	[wt%]	[wt%]		[wt%]
Pure Vo-MON@NCN		26.7	14.4	16.4	42.5
Vo-CMON@NCN-700	17.3	22.1	13.2	13.1	34.3
Vo-CMON@NCN-800	17.1	19.9	14.5	12.8	35.7
Vo-CMON@NCN-800	16.9	19.8	13.9	13.5	35.9

 Table S1. Element composition of all catalyst materials estimated from ICP-AES

Co, Mo, O, N, and C contents were detected by ICP-AES measurement.

ORR catalysts	Catalyst loading (mg cm ⁻²)	Electrolyte	E _{1/2} (V vs. RHE)	Ref#	
V ₀ -CMON@NCN-	0.1	0.1 M KOH	0.857	This work	
800	0.1		0.057	THIS WOIK	
Ni ₃ Fe/N-C sheets	0.13	0.1 M KOH	0.78	2	
NiFe-	0.70		0.70	3	
LDH/Co,NCNF	0.79	0.1 M KOH	0.79	5	
N-CG-CoO	0.1	0.1 M KOH	0.78	4	
Mn oxide	-	0.1 M KOH	0.73	5	
NiFe@NCX	0.40	0.1 M KOH	0.86	6	
Co/Co ₃ O ₄ @PGS	0.3	0.1 M KOH	0.89	7	
NiO/CoN PINWs	0.20	0.1 M KOH	0.68	8	
S,N-Fe/N/C-CNT	0.25	0.1 M KOH	0.84	9	
GH-BGQD	-	0.1 M KOH	0.73	10	
Ni-MnO/rGO			0.50	11	
aerogel	0.25	0.1 M KOH	0.78	11	
NiCo/PFC	0.13	0.1 M KOH	0.77	12	
NC@Co-NGC	-	0.1 M KOH	0.82	13	
Co-N _x -C	0.25	0.1 M KOH	0.80	14	
CoZn-NC700	-	0.1 M KOH	0.84	15	
NiCo ₃ S ₄ /N-CNT	0.25	0.1 M KOH	0.80	16	

Table S2. The catalytic activities of the reported non-noble bifunctional catalysts for ORR.

OER catalysts	Catalyst loading (mg cm ⁻²)	Electrolyte	E _{j=10} (V vs. RHE)	Ref#	
Vo-CMON@NCN-	0.1	0 1 M KOH	1 47	This work	
800	0.1	0.1 10 10011	1.17	THIS WORK	
Ni ₃ Fe/N-C sheets	0.13	0.1 M KOH	1.60	2	
NiFe-LDH/Co,NCNF	0.79	0.1 M KOH	1.54	3	
N-CG-CoO	0.1	0.1 M KOH	1.37	4	
Mn oxide	-	0.1 M KOH	1.77	5	
NiFe@NCX	0.40	0.1 M KOH	1.55	6	
Co/Co ₃ O ₄ @PGS	0.3	0.1 M KOH	1.58	7	
NiO/CoN PINWs	0.20	0.1 M KOH	1.53	8	
S,N-Fe/N/C-CNT	0.25	0.1 M KOH	1.60	9	
GH-BGQD	-	0.1 M KOH	1.60	10	
Ni-MnO/rGO aerogel	0.25	0.1 M KOH	1.60	11	
NiCo/PFC	0.13	0.1 M KOH	1.62	12	
NC@Co-NGC	-	0.1 M KOH	1.64	13	
Co-N _x -C	0.25	0.1 M KOH	1.75	14	
CoZn-NC700	-	0.1 M KOH	1.63	15	
NiCo ₃ S ₄ /N-CNT	0.25	0.1 M KOH	1.60	16	
NPMC-1000	-	0.1 M KOH	1.42	17	

 Table S3. The catalytic activities of the reported non-noble catalysts for OER.

Air cathode	OCP (V)	Power density (mW cm ⁻²)	Specific capacity (mAh $g_{zn}^{-1}@mA$ cm^{-2})	Energy density (W h g ⁻¹ @mA cm ⁻²)	Durability (h)	Ref#
V ₀ - CMON@NCN -800	1.403	143.7	-	841	500 h	This work
Co ₄ N/CNW/C C	1.40	174	-	-	1200s/cycle for 408 cycles; 136 h	18
NPMC-1100	1.48	55	735@5	835@5	600 cycles/100 h	17
NiFe@NC _X	-	87	583.7@10	732.3@1 0	600s/200 cvcles: 33 33 h	6
NiO/CoN PINWs	1.46	79.6	690@5	945@5	600 s/cycle for 25 cycles: 8 3 h	8
GH-BGQD	1.48	112	-	810	70 h	10
Ni-MnO/rGO aerogel	-	123	758@5	930@5	100 cycles	11
CoZn-NC-700	1.42	152	578@10	694@10	600 s/cycle for 385 cycles	15
NGM-Co	1.44	152	749.4@20	840@20	1350s/cycle for 160 cycles; 60	14
C-MOF-C ₂ - 900	1.46	105	741@10	-	300 cycles; 120 h	19
CoS _x @PCN/rG O	1.38	-	-	634	400s /cycle for 394 cycle; 43.8	20
N-GCNT/FeCo	1.48	89.3	872.2@10 0	653.2@1 00	-	21
ZnCo ₂ O ₄ /N- CNT	1.47	82.3	428.47@1 0	595.57@ 10	600s/ cycle for 23 cycles; 320	22
$Fe_{0.5}Co_{0.5}O_x$	1.44	86	709@25	806@25	120 h	23
Co ₃ FeS _{1.5} (OH)		113.1	898@20	-	108 cycles; 36 h	24
N-GRW	1.46	65	873@20		150 cycles/160 h	25
Meso- CoNC@GF	1.51	154.4	-	-	630 cycles; 105 h	26
CuS/NiS ₂	1.44	172.4	775@5	1015.2@ 5	200 cycles; 83 h	27

Table S4. The comparative performance of the ZAB with recently reported non-noble air cathode based ZAB devices in alkaline electrolytes.

References

- 1. Z. Yang, C. Zhao, Y. Qu, H. Zhou, F. Zhou, J. Wang, Y. Wu and Y. Li, *Adv. Mater.*, 2019, **31**, 1808043.
- G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang and J. B. Goodenough, *Adv. Energy Mater.*, 2017, 7, 1601172.
- 3. Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung and T. Zhang, *Adv. Energy Mater.*, 2017, **7**, 1700467.
- 4. S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, *Energy Environ. Sci.*, 2014, 7, 609-616.
- 5. Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132, 13612-13614.
- 6. J. Zhu, M. Xiao, Y. Zhang, Z. Jin, Z. Peng, C. Liu, S. Chen, J. Ge and W. Xing, ACS *Catal.*, 2016, **6**, 6335-6342.
- Y. Jiang, Y.-P. Deng, J. Fu, D. U. Lee, R. Liang, Z. P. Cano, Y. Liu, Z. Bai, S. Hwang, L. Yang, D. Su, W. Chu and Z. Chen, *Adv. Energy Mater.*, 2018, 8, 1702900.
- 8. J. Yin, Y. Li, F. Lv, Q. Fan, Y.-Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi and S. Guo, *ACS Nano*, 2017, **11**, 2275-2283.
- 9. P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu and Y. Xie, *Angew. Chem., Int. Ed.*, 2017, **56**, 610-614.
- 10. T. V. Tam, S. G. Kang, M. H. Kim, S. G. Lee, S. H. Hur, J. S. Chung and W. M. Choi, *Adv. Energy Mater.*, 2019, **9**, 1900945.
- 11. G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J.-M. Lee and Y. Tang, *Adv. Mater.*, 2018, **30**, 1704609.
- 12. G. Fu, Y. Chen, Z. Cui, Y. Li, W. Zhou, S. Xin, Y. Tang and J. B. Goodenough, *Nano Lett.*, 2016, **16**, 6516-6522.
- 13. S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C.-Y. Chiang, W. Zhou, J. Zhao and J. Qiu, *Adv. Mater.*, 2017, **29**, 1700874.
- 14. C. Tang, B. Wang, H.-F. Wang and Q. Zhang, Adv. Mater., 2017, 29, 1703185.
- 15. B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen and H. Yin, *Adv. Funct. Mater*, 2017, **27**, 1700795.
- 16. X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao and W. Hu, *Nano Energy*, 2017, **31**, 541-550.
- 17. J. Zhang, Z. Zhao, Z. Xia and L. Dai, *Nat. Nanotechnol.*, 2015, **10**, 444-452.
- F. Meng, H. Zhong, D. Bao, J. Yan and X. Zhang, J. Am. Chem. Soc., 2016, 138, 10226-10231.
- 19. M. Zhang, Q. Dai, H. Zheng, M. Chen and L. Dai, Adv. Mater., 2018, 30, 1705431.
- 20. W. Niu, Z. Li, K. Marcus, L. Zhou, Y. Li, R. Ye, K. Liang and Y. Yang, *Adv. Energy Mater.*, 2018, **8**, 1701642.
- 21. C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li, Z. Hou, F.-Q. Bai, H.-X. Zhang and T.-Y. Ma, *Adv. Energy Mater.*, 2017, **7**, 1602420.
- 22. Z. Q. Liu, H. Cheng, N. Li, T. Y. Ma and Y. Z. Su, Adv. Mater., 2016, 28, 3777-3784.
- 23. L. Wei, H. E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu and Y. Chen, *Adv. Mater.*, 2017, **29**, 1701410.
- 24. H.-F. Wang, C. Tang, B. Wang, B.-Q. Li and Q. Zhang, *Adv. Mater.*, 2017, **29**, 1702327.
- 25. H. B. Yang, J. Miao, S.-F. Hung, J. Chen, H. B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H. M. Chen, L. Dai and B. Liu, *Sci. Adv.*, 2016, **2**, e1501122.
- 26. S. Liu, M. Wang, X. Sun, N. Xu, J. Liu, Y. Wang, T. Qian and C. Yan, *Adv. Mater.*, 2018, **30**, 1704898.
- 27. L. An, Y. Li, M. Luo, J. Yin, Y.-Q. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi and S. Guo, *Adv. Funct. Mater*, 2017, **27**, 1703779.