Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary information Low-Valence Titanium Oxides Synthesized by Electric Field Control as Novel Conversion Anodes for High Performance Sodium-Ion Batteries

Hongwei Tao†, Ruxing Wang†, Yun Tang, Min Zhou*, Kangli Wang, Jianwei Hu, Pingyuan Feng, Manlin Chen, Haomiao Li and Kai Jiang*

State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China E-mail: kjiang@hust.edu.cn (K. Jiang), minzhou0729@hust.edu.cn (M. Zhou)

[†] These authors contributed equally to this work

Theoretical calculations

The Vienna Ab Initio Package (VASP)^{1,2} was employed to perform all the density functional theory (DFT) calculations within the generalized gradient approximation (GGA) using the PBE³ formulation. The projected augmented wave (PAW) potentials^{4,5} was chosen to describe the ionic cores and the valence electrons were taken into account using a plane wave basis set with a kinetic energy cutoff of 450 eV. Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian smearing method and a width of 0.05 eV. The on-site corrections (DFT+U) have been applied to the 3d electron of Ti atoms (Ueff=4.2 eV) by the approach from Dudarev et al.⁶ The electronic energy was considered self-consistent when the energy change was smaller than 10^{-5} eV. A geometry optimization was considered convergent when the force change was smaller than 0.02 eV/Å.

The equilibrium lattice constants of hexagonal Ti_2O unit cell were optimized, when using a $15 \times 15 \times 9$ Monkhorst-Pack k-point grid for Brillouin zone sampling, to be a=b=3.0094 and c=4.9203 Å. The unit cell was used to construct a Ti_2O supercell with $3 \times 3 \times 2$ periodicity in the x, y and z directions, respectively. This supercell contains 36 Ti and 18 O atoms. During structural optimizations, a $4 \times 4 \times 3$ k-point grid in the Brillouin zone was used for k-point sampling, and all atoms were allowed to relax.

The equilibrium lattice constant of NaCl-type TiO unit cell was optimized, when using a $9 \times 9 \times 9$ Monkhorst-Pack k-point grid for Brillouin zone sampling, to be a=4.3469 Å. The unit cell was used to construct a TiO supercell with $2 \times 2 \times 2$ periodicity in the x, y and z directions, respectively. This supercell contains 32 Ti and 32 O atoms. During structural optimizations, a $4 \times 4 \times 4$ k-point grid in the Brillouin zone was used for k-point sampling, and all atoms were allowed to relax.

The equilibrium lattice constants of tegragonal anatase-TiO₂ unit cell were optimized, when using a $10 \times 10 \times 4$ Monkhorst-Pack k-point grid for Brillouin zone sampling, to be a=b=3.8498 and c=9.6627 Å. The unit cell was used to construct a TiO₂ supercell with $2 \times 2 \times 1$ periodicity in the x, y and z directions, respectively. This supercell contains 16 Ti and 32 O atoms. During structural optimizations, a $5 \times 5 \times 4$ k-point grid in the Brillouin zone was used for k-point sampling, and all atoms were allowed to relax.

1. The photo images of raw TiO₂, TiO and Ti₂O.

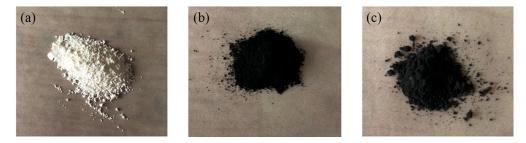


Figure S1 The photo images of (a) raw TiO₂, (b) TiO and (c) Ti₂O

2. Rietveld refined XRD patterns of raw TiO₂, TiO and Ti₂O.

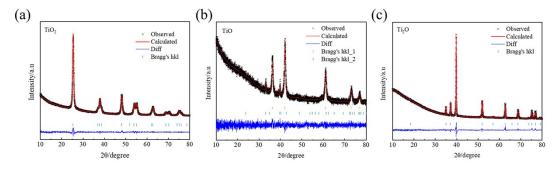


Figure S2 Rietveld refined XRD patterns of (a) raw TiO₂, (b) TiO and (c) Ti₂O

Table S1. Crystallographic data for raw TiO₂, TiO and Ti₂O obtained from the rietveld refined XRD

	Raw TiO ₂	Ti	Ti ₂ O		
		TiO phase	Ti ₂ O ₃ phase	1120	
Crystal	Tetragonal	Cubic	Hexagonal	Hexagonal	
system	retragonar	Cubic	Tiexagonar		

Space	I41/amd		Fm-3m		R-3c		P-3m1	
group								
Lattice parameters	<i>a</i> (<i>b</i>)=3.7870(16), <i>c</i> =9.5107(40) (Å), α (β, γ) =90 °		<i>a</i> (<i>b</i> , <i>c</i>)=4.3955(70) (Å), α (β, γ) =90 °		a (b)=5.1451(38), c = 13.6179(96) (Å), α (β) =90 °, $\gamma = 120$ °		<i>a</i> (<i>b</i>)=2.960827(93), <i>c</i> =4.83708(18) (Å), α (β) =90 °, γ =120 °	
Atom	Ti1	01	Ti1	01	Ti1	01	Ti1	01
Wyckoff	4a	8e	4a	4b	12c	18e	2d	la
Х	0	0	0	0.5	0	0.3133	0.6667	0
У	0	0	0	0.5	0	0	0.3333	0
Z	0	0.20899(13)	0	0.5	0.34485	0.25	0.26515(66)	0
B_{iso} (Å ²)	0.151(22)	0.101(46)	0.100(96)	1.50(14)	0.5(2)	0.5(2)	0.100(53)	0.142(17)
Lattice strain	0.15767		0.00003			0.00785		
Average length of								
Ti-O bond	1.9512		2.1477		2.0434		2.137	
(Å)								
Cell								
volume	136.39(13)		79.26(39)		312.20(48)		36.7231(27)	
(Å ³)								
R _{wp}	5.5	573%	5.838%			4.054%		
R _p	4.293%		4.401%		2.553%			

The small values of $R_{\rm wp}$ and $R_{\rm p}$ demonstrate that the refined data is reliable.

3. Comparison of Ti 2p XPS spectra of TiO and Ti₂O before and after etching

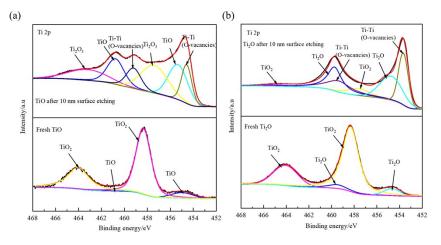


Figure S3 Comparison of Ti 2p XPS spectra of (a) TiO and (b)Ti₂O before and after etching.

As shown in the figure S3b, the high-resolution Ti 2p XPS spectra of Ti₂O sample after 10 nm surface etching can be fitted to six peaks which are located at 453.7 eV, 454.7 eV, 457.6 eV, 459.4 eV, 459.7 eV and 464.9 eV, respectively. The peaks at 454.7 and 459.7 eV corresponds to Ti₂O phase. The peaks around 457.6 eV and 464.9 eV can be attributed to TiO₂ derived from oxidation of Ti₂O in the air. The peaks at 453.7 eV and 459.4 eV can be assigned to Ti-Ti bonds formed by O vacancies in the sublattice.⁷ For TiO, six peaks can be fitted in the XPS results of TiO sample after 10 nm surface etching (Figure S3a). The peaks at 455.3 eV and 460.8 eV are ascribed to the TiO phase. The binding energies at 457.4 eV and 463.2 eV can be assigned to Ti₂O₃ phase. The peaks located at 454.3 eV and 459.2 eV are attributed to Ti-Ti bonds originated from the O vacancies in the sublattice. The photoelectron peaks of low-valence titanium oxide are much stronger in the sample with 10 nm surface depth etching, which further proves that there is indeed a layer of TiO₂ oxide film on the surface of TiO and Ti₂O samples.

4. *I-V* curves of raw TiO₂, TiO and Ti₂O

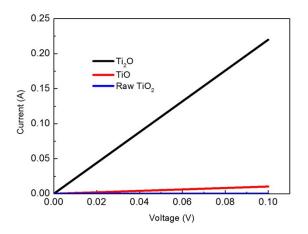


Figure S4 *I-V* curves of raw TiO₂, TiO and Ti₂O.

5. Density function theory (DFT) calculations for raw TiO₂, TiO and Ti₂O

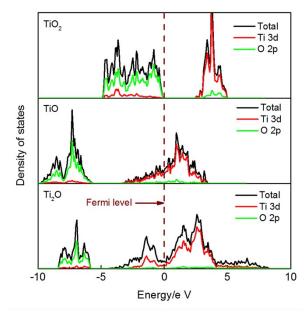


Figure S5 The density of states of raw TiO_2 , TiO and Ti_2O . The dotted line represents the Fermi level.

6. CV curves of TiO electrode

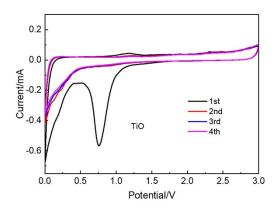


Figure S6 CV curves of TiO electrode at a sweep rate of 0.1 mV s⁻¹ between 0.005-3 V (vs Na/Na⁺).

7. Charge/discharge curves of TiO electrodes

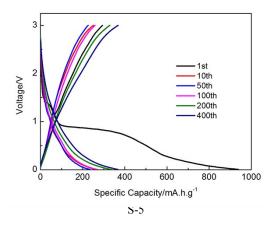


Figure S7 Charge/discharge curves of TiO electrode at a current density of 200 mA g⁻¹.

8. Survey XPS spectra of further washed Ti₂O

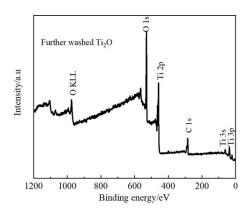


Figure S8 Survey XPS spectra of further washed Ti₂O.

9. SEM, TEM images of further washed Ti₂O and comparison of electrochemical performance of Ti₂O electrode and further washed Ti₂O electrode.

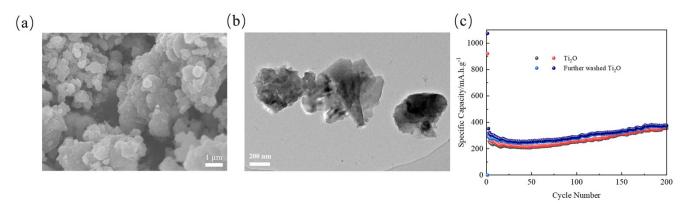
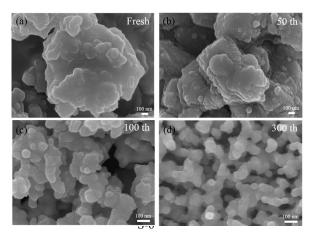



Figure S9 (a) SEM, (b) TEM images of further washed Ti₂O and (c) comparison of electrochemical performance of Ti₂O electrode and further washed Ti₂O electrode.

10. SEM images of Ti₂O electrode after different cycles at fully charged state

11. Ex-situ TEM images of Ti₂O electrode.

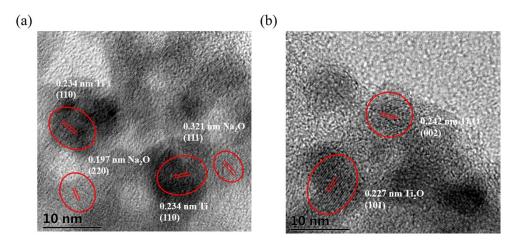


Figure S11 Ex-situ TEM images of Ti₂O electrode at fully discharge and charge states in the first cycle. As shown in this Figure, when discharged to 0.005 V, the lattice fringes with interplanar distances of 0.234, 0.321 and 0.197 nm are observed in the HRTEM image (Figure S8a), corresponding to (110) crystal planes of Ti and (111), (220) crystal planes of Na₂O, indicating Ti₂O is absolutely reduced to Ti during the full discharge process. Once recharged to 3.0 V, the HRTEM image reveals two clear lattice fringes with spacing of 0.242 and 0.227 nm (Figure S8a), which can be ascribed to the (002) and (101) crystal planes of the Ti₂O, confirming the oxidation of metallic Ti to Ti₂O. The above analysis are agreed well with the results of others ex-situ characterizations.

12. Ex-situ Raman spectra of Ti₂O electrode.

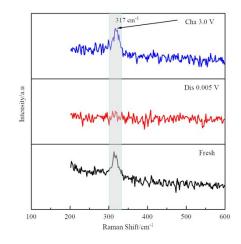


Figure S12 Ex-situ Raman spectra of Ti₂O electrode at fully discharge and charge states in the first cycle. In this Figure, when discharged to 0.005 V, the disappearance of the vibration characteristic peak of Ti₂O at 317 cm⁻¹, indicating the fracture of Ti-O band during the full discharge process. When fully recharged back

to 3.0 V, the vibration characteristic peak of Ti_2O reappear, suggesting the high electrochemical reversibility of Ti_2O electrode.

13. Ex-situ XRD patterns of Ti₂O electrode at discharge and charge states in the 200th cycle.

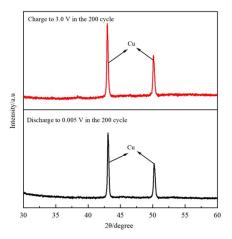


Figure S13 Ex-situ XRD patterns of Ti₂O electrode at discharge and charge states in the 200th cycle.

14. Ex-situ XPS spectra of Ti₂O electrode at discharge and charge states in the 200th cycle.

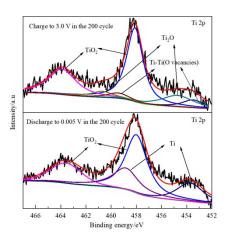


Figure S14 Ex-situ XPS spectra of Ti₂O electrode at discharge and charge states in the 200th cycle.

15. N₂ adsorption–desorption isotherm of the raw TiO_2 and Ti_2O samples.

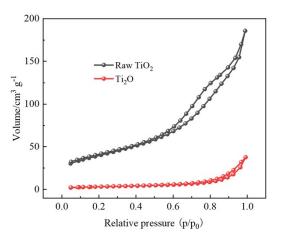


Figure S15 N₂ adsorption-desorption isotherm of the raw TiO₂ and Ti₂O samples.

16. Electrochemical impedance spectra (EIS) and equivalent circuit model of raw TiO₂, TiO and Ti₂O electrodes.

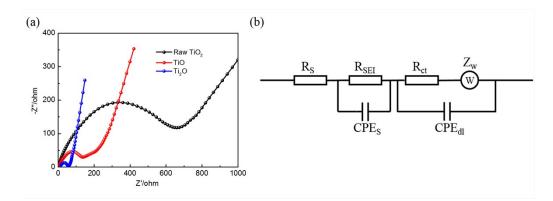


Figure S16 Electrochemical impedance spectra (EIS) and equivalent circuit model of raw TiO_2 , TiO and Ti_2O at fully charge state after 100 cycles.

Table S2.	Table S2. Fitting results for the Nyquist plots obtained using the equivalent circuit.					
Samples	$R_{S}(\Omega)$	$R_{SEI}\left(\Omega\right)$	CPE _S (F)	$R_{ct}(\Omega)$	CPE _{dl} (F)	Chi-
Bampies						Squared
Raw TiO ₂	3.3	46.6	3.7×10 ⁻⁶	533.9	5.4×10 ⁻⁷	1.4×10 ⁻³
TiO	4.0	7.3	2.9×10 ⁻⁶	115.9	2.3×10 ⁻⁶	3.1×10 ⁻³
Ti ₂ O	11.5	1.3	1.9×10 ⁻⁵	41.6	2.2×10 ⁻⁶	4.5×10 ⁻⁴

17. D_{Na^+} diffusion coefficient calculation.

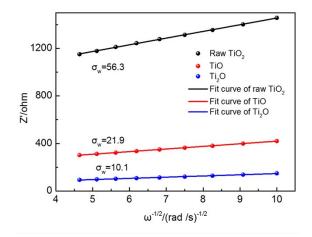


Figure S17 Graph of the inverse square root of angular frequency as a function of Warburg impedance

The solid-state diffusion of sodium ions D_{Na^+} through CuS can be estimated by using the following equations:

$$D = \frac{R^2 T^2}{2A^2 F^4 n^4 C^2 \sigma_W^2}$$
(S1)

$$Z' = R_S + R_{ct} + \sigma_W \omega^{-0.5} \tag{S2}$$

wherein *R* is the gas constant, *T* is the absolute temperature, *F* is the Faraday constant, *A* is the footprint area of the electrode, *n* is the number of electrons involved in the half-reaction for the redox couple, *C* is the molar concentration of sodium ions in a solid, and σ_w is the Warburg coefficient. *R*, *T*, and *F* are constant. *A*, *n*, and *C* remain consistent in the samples of CuS-b and CuS during tests. Figure 4f shows that the σ_w of raw TiO₂, TiO and Ti₂O are 56.3, 21.9 and 10.1 (Ω s^{-1/2}), respectively. Thus, low-valence titanium oxides have larger D_{Na+} than raw TiO₂.

18. XRD pattern of Na₃V₂(PO₄)₃/C.

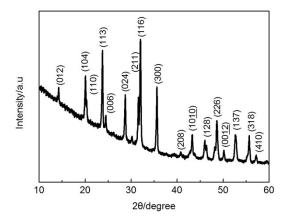
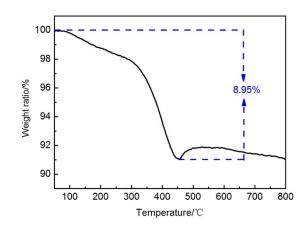



Figure S18 XRD pattern of Na₃V₂(PO₄)₃/C

19. TG curve of Na₃V₂(PO₄)₃/C.

20. SEM image of Na₃V₂(PO₄)₃/C.

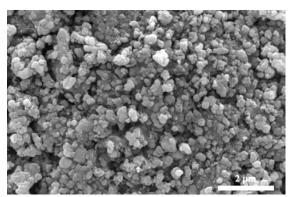


Figure S20 SEM image of Na₃V₂(PO₄)₃/C

21. electrochemical performance of Na₃V₂(PO₄)₃/C cathode.

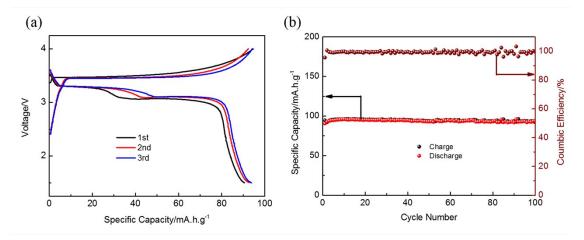


Figure S21 (a) charge/discharge profiles of Na₃V₂(PO₄)₃/C electrode in the initial three cycles, (b) cycling performance of Na₃V₂(PO₄)₃/C electrode at a current density of 200 mA g⁻¹.

References

- 1. G. Kresse and J. Furthmüller, Comp.mat.er, 1996, 6, 15-50.
- 2. G. Kresse and F. J, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865--3868.
- 4. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 5. P. E. Blochl, Phys. Rev. B Condens Matter, 1994, 50, 17953-17979.
- S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, *Phys. Rev. B*, 1998, 57, 1505-1509

7. A. Singh and V. Kalra, ACS Appl. Mater. Interfaces, 2018, 10, 37937-37947.