## **Electronic supplementary information**

# Engineering highly active $Cd_{1-x}Zn_xS$ nanopopcorns via zinc blende/wurtzite phase junctions for enhanced photocatalytic $H_2$ evolution without co-catalyst

Xiaosheng Guo, Chuchu Cheng, Fangshu Xing, Caijin Huang\*

State Key Laboratory of Photocatalysis on Energy and Environment, College of

Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.

\*To whom correspondence should be addressed.

*E-mail: cjhuang@fzu.edu.cn* 

### Figures



Fig. S1 SEM images of  $Cd_{1-x}Zn_xS-10$  samples. (a) CdS-10, (b)  $Cd_{0.9}Zn_{0.1}S-10$ , (c)  $Cd_{0.7}Zn_{0.3}S-10$ , (d)  $Cd_{0.5}Zn_{0.5}S-10$ , (e)  $Cd_{0.3}Zn_{0.7}S-10$ , (f)  $Cd_{0.1}Zn_{0.9}S-10$  and (g) ZnS-10.



**Fig. S2** (a) TEM and (b and c) HRTEM images of  $Cd_{0.5}Zn_{0.5}S$ -10. The lattice fringes with a spacing of ca. 0.20, 0.22, 0.31 and 0.34 nm can be indexed to the (110), (102), (101) and (002) plane of WZ  $Cd_{1-x}Zn_xS$  solid solution, respectively.



**Fig. S3** (a) TEM, (b and c) HRTEM images of ZnS-16. (d) Dark-field TEM and (e–h) corresponding EDX elemental mapping images of ZnS-16. The inset in b is the SAED pattern of ZnS-16. The lattice fringes with a spacing of ca. 0.31 and 0.32 nm can be indexed to the (002) and (020) plane of  $ZnS(en)_{0.5}$ ,<sup>1</sup> respectively.



**Fig. S4** EDX spectra of nanoplates, nanopopcorns and ZnS-16 in Area 1# (Fig. 3g), Area 2# (Fig. 3g) and Area 3# (Fig. S3d), respectively.



Fig. S5 The overall survey XPS spectrum of Cd<sub>0.5</sub>Zn<sub>0.5</sub>S-16.



Fig. S6  $H_2$ -evolution rates of  $Cd_{0.5}Zn_{0.5}S$ -16 with different weights using 420-nm LED light.



Fig. S7 (a) XRD patterns and (b–c) SEM images of  $Cd_{0.5}Zn_{0.5}S$ -16 before and after photocatalytic reaction.



**Fig. S8** XPS spectra of Cd<sub>0.5</sub>Zn<sub>0.5</sub>S-16 before and after photocatalytic reaction. (a) Cd 3d, (b) Zn 2p, and (C) S 2p.



Fig. S9 Photographs of  $Cd_{1-x}Zn_xS$ -16 and  $Cd_{0.5}Zn_{0.5}S$ -10.



Fig. S10 UV–vis absorption spectra of  $Cd_{0.5}Zn_{0.5}S$ -10 and  $Cd_{0.5}Zn_{0.5}S$ -16.



Fig. S11 (a–b) XRD patterns and determined bandgaps of WZ  $Cd_{0.7}Zn_{0.3}S$  and ZB  $Cd_{0.7}Zn_{0.3}S$ . (c–d) Mott–Schottky plots of WZ  $Cd_{0.7}Zn_{0.3}S$  and ZB  $Cd_{0.7}Zn_{0.3}S$  at different frequencies of 1500, 1000 and 500 Hz.



Fig. S12 Photocatalytic H<sub>2</sub>-evolution activities of WZ Cd<sub>0.7</sub>Zn<sub>0.3</sub>S and ZB Cd<sub>0.7</sub>Zn<sub>0.3</sub>S.

#### Tables

| sample                    | Weight percentage (wt%) |       |       | At    | comic pe | rcentage | (at%) |       |
|---------------------------|-------------------------|-------|-------|-------|----------|----------|-------|-------|
|                           | N                       | Cd    | Zn    | S     | Ν        | Cd       | Zn    | S     |
| nanoplates<br>(Area 1#)   | 9.05                    | 10.04 | 51.35 | 29.55 | 25.45    | 3.93     | 33.13 | 37.49 |
| nanopopcorns<br>(Area 2#) | 1.48                    | 49.86 | 13.98 | 34.68 | 5.43     | 25.46    | 11.76 | 57.35 |
| ZnS-16<br>(Area 3#)       | 6.55                    | 1.06  | 60.45 | 31.93 | 18.72    | 0.42     | 39.66 | 41.20 |

**Table S1** EDX experimental data of nanoplates (Fig. 3g, Area 1#), nanopopcorns (Fig.3g, Area 2#) and ZnS-16 (Fig. S3d, Area 3#).

Table S2 ICP-OES experimental data for Cd<sub>0.5</sub>Zn<sub>0.5</sub>S-16.

| sample                                   | Weight percentage (wt%) |       |       | Mole ratio |
|------------------------------------------|-------------------------|-------|-------|------------|
|                                          | Cd                      | Zn    | S     | Cd : Zn    |
| Cd <sub>0.5</sub> Zn <sub>0.5</sub> S-16 | 46.54                   | 27.36 | 14.81 | 1:1.01     |

**Table S3** Absolute fluorescence quantum yield  $(\Phi_f)$  of Cd<sub>0.5</sub>Zn<sub>0.5</sub>S-10 and Cd<sub>0.5</sub>Zn<sub>0.5</sub>S-16.

| Sample        | $Cd_{0.5}Zn_{0.5}S-10$ | Cd <sub>0.5</sub> Zn <sub>0.5</sub> S-16 |
|---------------|------------------------|------------------------------------------|
| $arPsi_f(\%)$ | 1.47                   | 0.21                                     |

| Photocatalyst                                                | Preparation<br>method                    | Solvent/<br>Temperature                                | Activity ( $\mu$ mol $h^{-1}$ mg <sup>-1</sup> )                        | AQY%<br>(420 nm) | Ref          |
|--------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|------------------|--------------|
| ZB/WZ<br>Cd <sub>1-x</sub> Zn <sub>x</sub> S<br>nanopopcorns | solvothermal                             | en/180 °C                                              | 282.14<br>(λ≥420 nm)                                                    | 64.4             | This<br>work |
| Cd <sub>0.5</sub> Zn <sub>0.5</sub> S<br>nanorod             | microwave<br>irradiation<br>solvothermal | en+H <sub>2</sub> O/ 230<br>°C                         | 25.8<br>(λ≥430 nm)                                                      | 62               | 2            |
| Cd <sub>0.5</sub> Zn <sub>0.5</sub> S nanospheres            | solvothermal                             | en+H <sub>2</sub> O/ 180<br>°C                         | 83.5<br>(λ≥420 nm)                                                      | 47.5             | 3            |
| $Cd_{1-x}Zn_xS$                                              | co-<br>precipitation                     | H <sub>2</sub> O/25 °C                                 | 30<br>(λ>400 nm)<br>(Na <sub>2</sub> S-K <sub>2</sub> SO <sub>3</sub> ) | -                | 4            |
| Twin-<br>Cd <sub>0.5</sub> Zn <sub>0.5</sub> S               | solvothermal                             | H <sub>2</sub> O/180 °C                                | 46.6<br>(λ>420 nm)                                                      | 6.6              | 5            |
| $Cd_{0.7}Zn_{0.3}S$                                          | solvothermal                             | deta+H <sub>2</sub> O/<br>180 °C                       | 31.3<br>(λ≥420 nm)                                                      | 65.7             | 6            |
| Cd <sub>0.5</sub> Zn <sub>0.5</sub> S nanoparticles          | hydrothermal                             | H <sub>2</sub> O/180 °C                                | 125.27<br>(λ≥420 nm)                                                    | 21.5             | 7            |
| Cd <sub>0.4</sub> Zn <sub>0.6</sub> S                        | reflux                                   | H <sub>2</sub> O+oleylami<br>ne+octadecene<br>/ 230 °C | 1.93<br>(λ≥420 nm)                                                      | -                | 8            |
| Cd <sub>0.6</sub> Zn <sub>0.4</sub> S                        | solvothermal                             | H <sub>2</sub> O+TEOA/<br>160 °C                       | 9.44<br>(λ>420 nm)                                                      | 9.8              | 9            |
| ZB-WZ<br>Cd <sub>1-x</sub> Zn <sub>x</sub> S                 | ultrasonic<br>assisted<br>precipitation  | ethanol/160 °C                                         | 9.8<br>(λ≥430 nm)                                                       | 48.7             | 10           |

| Photocatalyst                                                    | Light<br>source<br>(Xe lamp)       | Sacrificial reagent                               | Activity<br>(µmol h <sup>-1</sup><br>mg <sup>-1</sup> ) | AQY%<br>(420 nm) | Ref          |
|------------------------------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------------|------------------|--------------|
| ZB/WZ<br>Cd <sub>1-x</sub> Zn <sub>x</sub> S<br>nanopopcorns     | $\lambda \geqslant 420 \text{ nm}$ | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 282.14                                                  | 64.4             | This<br>work |
| $Zn_{0.5}Cd_{0.5}S$                                              | $\lambda \geqslant 400 \text{ nm}$ | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 7.42                                                    | 9.6              | 11           |
| Twin-Zn <sub>0.5</sub> Cd <sub>0.5</sub> S                       | $\lambda \ge 430 \text{ nm}$       | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 17.9                                                    | 43 (425 nm)      | 12           |
| $NiS_x$ - $Zn_{0.5}Cd_{0.5}S$                                    | $\lambda \ge 430 \text{ nm}$       | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 44.6                                                    | 100 (425 nm)     | 13           |
| Zn <sub>0.5</sub> Cd <sub>0.5</sub> S/                           | }>120 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 246                                                     | 16.5             | 5            |
| $PdP_{\sim 0.33}S_{\sim 1.67}$                                   | <i>№</i> 420 IIII                  | Ascorbic acid                                     | 372                                                     | 19.7             |              |
| Cd <sub>0.5</sub> Zn <sub>0.5</sub> S<br>nanorod                 | $\lambda \ge 430 \text{ nm}$       | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 25.8                                                    | 62 (425 nm)      | 2            |
| $\begin{array}{c} Cu_{1.94}S\text{-}\\ Zn_xCd_{1-x}S\end{array}$ | λ>420 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 7.74                                                    | 8.5              | 14           |
| $\frac{Pt/Cu_{1.94}S}{Zn_xCd_{1-x}S}$                            | λ>420 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 13.53                                                   | 26.4             | 14           |
| NiS/Zn <sub>0.5</sub> Cd <sub>0.5</sub> S                        | λ>420 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 16.78                                                   | -                | 15           |
| $Zn_{1-x}Cd_xS/$ D-<br>ZnS(en) <sub>0.5</sub>                    | λ>420 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 15.5                                                    | 50 (440 nm)      | 16           |
| Zn <sub>0.5</sub> Cd <sub>0.5</sub> S@<br>HNTs-10                | λ>400 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 25.67                                                   | 32.3             | 17           |
| $\frac{Pt\text{-}PdS}{Zn_{0.5}Cd_{0.5}S\text{-}P}$               | λ>420 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | ~ 7                                                     | 89               | 18           |
| Ni <sub>2</sub> P/ Zn <sub>0.5</sub> C <sub>d0.5</sub> S         | λ>420 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 23.44                                                   | 19               | 19           |
| Cd <sub>0.5</sub> Zn <sub>0.5</sub> S/TNTs                       | λ>430 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 1.74                                                    | 38.1             | 20           |
| Hollow<br>Zn <sub>0.6</sub> Cd <sub>0.4</sub> S cage             | λ>420 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 5.68                                                    | -                | 21           |

Table S5 Comparison of  $Cd_{1-x}Zn_xS$ -based catalysts for photocatalytic  $H_2$  evolution.

| Twin-Cd <sub>1-x</sub> Zn <sub>x</sub> S/                                       | 1> <b>120</b>                 | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub>               | 69.25 | 55.2             | 22 |
|---------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------|-------|------------------|----|
| $MoS_2$                                                                         | λ>420 nm                      | Lactic acid                                                     | 37.22 | 36.3             | 22 |
| Pt/Zn <sub>x</sub> Cd <sub>1-x</sub> S<br>hollow<br>nanospheres                 | λ>420 nm                      | Lactic acid                                                     | 4.11  | ~ 23             | 23 |
| $Ni_{x}Co_{1-x}/Zn_{0.75}Cd_{0.25}S$                                            | λ>420 nm                      | Na <sub>2</sub> S-<br>Na <sub>2</sub> SO <sub>3</sub> -<br>TEOA | 84.7  | 13.3<br>(365 nm) | 24 |
| Ni/NiS/<br>Zn <sub>0.2</sub> Cd <sub>0.8</sub> S                                | $\lambda \ge 420 \text{ nm}$  | Lactic acid                                                     | 4.15  | 11.1             | 25 |
| Zn <sub>0.5</sub> Cd <sub>0.5</sub> S@<br>PAN                                   | $\lambda \ge 420 \text{ nm}$  | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub>               | 9.5   | 27.4             | 26 |
| Pt/Twin-<br>Cd <sub>1-x</sub> Zn <sub>x</sub> S                                 | $\lambda > 400 \text{ nm}$    | ascorbic acid                                                   | 5.5   | 8.6              | 27 |
| $Zn_{0.8}Cd_{0.2}S@$ g-<br>C <sub>3</sub> N <sub>4</sub>                        | $\lambda \ge 420 \text{ nm}$  | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub>               | 23.51 | 1.4              | 28 |
| Pt/Cd <sub>0.5</sub> Zn <sub>0.5</sub> S/<br>BiVO <sub>4</sub>                  | λ>420 nm                      | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub>               | 2.35  | 24.1             | 29 |
| Twin-Cd <sub>0.5</sub> Zn <sub>0.5</sub> S/<br>CoO                              | λ>420 nm                      | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub>               | 178   | 37.1             | 30 |
| MoS <sub>2</sub> -Cd <sub>0.5</sub> Zn <sub>0.5</sub> S                         | $\lambda \ge 420 \text{ nm}$  | Lactic acid                                                     | 11.49 | 1.3              | 31 |
| $\begin{array}{c} CoFe_2O_4 / \\ Cd_{0.9}Zn_{0.1}S \end{array}$                 | λ>400 nm                      | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub>               | 3.5   | 27               | 32 |
| Zn <sub>0.5</sub> Cd <sub>0.5</sub> S/<br>Ni <sub>0.1</sub> Co <sub>0.9</sub> P | λ>400 nm                      | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub>               | 19.52 | 19.7             | 33 |
| Cu-doped<br>Zn <sub>0.5</sub> Cd <sub>0.5</sub> S                               | $\lambda \geq 420 \text{ nm}$ | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub>               | 21.4  | 18.8(428 nm)     | 34 |
| Zn-Cd-S (surface defects)                                                       | λ>420 nm                      | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub>               | 11.42 | 16.9             | 35 |

| $BP_x/Zn_{0.5}Cd_{0.5}S$                         | λ>420 nm                           | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 137.17 | 36.3 | 36 |
|--------------------------------------------------|------------------------------------|---------------------------------------------------|--------|------|----|
| Cd <sub>1-x</sub> Zn <sub>x</sub> S /CdS         | $\lambda \geqslant 420 \text{ nm}$ | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 133.5  | 50.1 | 37 |
| Cd <sub>1-x</sub> Zn <sub>x</sub> S@ O-          | ) > 120 nm                         | Na <sub>2</sub> S-Na <sub>2</sub> SO <sub>3</sub> | 223.17 | 64.1 | 38 |
| MoS <sub>2</sub> /Ni <sub>2</sub> O <sub>3</sub> | <b>№</b> 420 IIIII                 | Lactic acid                                       | 66.08  | 41.2 |    |

#### References

- 1 W. H. Feng, Z. B. Fang, B. Wang, L. L. Zhang, Y. Zhang, Y. Yang, M. L. Huang, S. X. Weng and P. Liu, *J. Mater. Chem. A*, 2017, **5**, 1387-1393.
- 2 M. Liu, D. Jing, Z. Zhou and L. Guo, *Nat. Commun.*, 2013, **4**, 2278.
- 3 J. G. Song, R. R. Sun, Y. L. Chen, D. J. Sun and X. Y. Li, *Int. J. Hydrogen Energy*, 2018, **43**, 18220-18231.
- 4 Y. Y. Hsu, N. T. Suen, C. C. Chang, S. F. Hung, C. L. Chen, T. S. Chan, C. L. Dong, C. C. Chan, S. Y. Chen and H. M. Chen, *ACS Appl. Mater. Interfaces*, 2015, **7**, 22558-22569.
- 5 J. Song, H. Zhao, R. Sun, X. Li and D. Sun, *Energy Environ. Sci.*, 2017, 10, 225-235.
- H. Du, K. Liang, C. Z. Yuan, H. L. Guo, X. Zhou, Y. F. Jiang and A. W. Xu, ACS Appl. Mater. Interfaces, 2016, 8, 24550-24558.
- 7 R. Sun, J. Song, H. Zhao and X. Li, *Mater. Charact.*, 2018, **144**, 57-65.
- 8 X. Zhao, Z. M. Luo, T. J. Hei and Y. W. Jiang, J. Photochem. Photobiol., A, 2019, **382**, 111919.
- 9 J. Wang, Y. Ma, X. Jiang and H. Du, J. Alloys Compd., 2021, 854, 156850.
- 10 K. Zhang, Y. Dai, Z. Zhou, S. Ullah Jan, L. Guo and J. R. Gong, *Nano Energy*, 2017, **41**, 101-108.
- 11 Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu and J. Gong, ACS Catal., 2013, 3, 882-889.
- 12 M. C. Liu, L. Z. Wang, G. Q. Lu, X. D. Yao and L. J. Guo, *Energy Environ. Sci.*, 2011, **4**, 1372-1378.
- 13 M. C. Liu, Y. B. Chen, J. Z. Su, J. W. Shi, X. X. Wang and L. J. Guo, *Nature Energy*, 2016, 1, 16151.
- Y. G. Chen, S. Zhao, X. Wang, Q. Peng, R. Lin, Y. Wang, R. A. Shen, X. Cao, L. B. Zhang, G. Zhou, J. Li, A. D. Xia and Y. D. Li, *J. Am. Chem. Soc.*, 2016, **138**, 4286-4289.
- 15 X. X. Zhao, J. R. Feng, J. Liu, W. Shi, G. M. Yang, G. C. Wang and P. Cheng, *Angew. Chem., Int. Ed.*, 2018, **57**, 9790-9794.
- 16 W. H. Feng, Y. Z. Wang, X. Y. Huang, K. Q. Wang, F. Gao, Y. Zhao, B. Wang, L. L. Zhang and P. Liu, *Appl. Catal., B*, 2018, **220**, 324-336.
- S. Lin, Y. H. Zhang, Y. You, C. Zeng, X. Xiao, T. Y. Ma and H. W. Huang, *Adv. Funct. Mater.*, 2019, 29, 1903825.
- 18 K. Khan, X. P. Tao, M. Shi, B. Zeng, Z. C. Feng, C. Li and R. G. Li, *Adv. Funct. Mater.*, 2020, **30**, 2003731.
- 19 D. S. Dai, L. Wang, N. Xiao, S. S. Li, H. Xu, S. Liu, B. R. Xu, D. Lv, Y. Q. Gao, W. Y. Song, L. Ge and J. Liu, *Appl. Catal., B*, 2018, **233**, 194-201.

- 20 Y. B. Chen and L. J. Guo, J. Mater. Chem., 2012, 22, 7507-7514.
- 21 J. M. Chen, J. Y. Chen and Y. W. Li, J. Mater. Chem. A, 2017, 5, 24116-24125.
- 22 Y. Y. Li, B. W. Sun, H. F. Lin, Q. Q. Ruan, Y. L. Geng, J. Liu, H. Wang, Y. Yang, L. Wang and K. C. Tam, *Appl. Catal., B*, 2020, **267**, 118702.
- 23 C. Y. Zhang, H. H. Liu, W. N. Wang, H. S. Qian, S. Cheng, Y. Wang, Z. B. Zha, Y. J. Zhong and Y. Hu, *Appl. Catal., B*, 2018, **239**, 309-316.
- 24 X. Z. Yue, S. S. Yi, R. W. Wang, Z. T. Zhang and S. L. Qiu, *Appl. Catal., B*, 2018, **224**, 17-26.
- Y. Sun, C. Xu, H. Ma, G. Li, L. Chen, Y. Sun, Z. Chen, P. Fang, Q. Fu and C. Pan, *Chem. Eng. J.*, 2021, 406, 126878.
- 26 J. W. Fu, B. C. Zhu, W. You, M. Jaroniec and J. G. Yu, Appl. Catal., B, 2018, 220, 148-160.
- 27 B. J. Ng, L. K. Putri, X. Y. Kong, K. P. Y. Shak, P. Pasbakhsh, S. P. Chai and A. R. Mohamed, *Appl. Catal., B*, 2018, **224**, 360-367.
- 28 F. Y. Tian, D. F. Hou, F. Tang, M. Deng, X. Q. Qiao, Q. C. Zhang, T. Wu and D. S. Li, J. Mater. Chem. A, 2018, 6, 17086-17094.
- 29 C. Zeng, Y. M. Hu, T. R. Zhang, F. Dong, Y. H. Zhang and H. W. Huang, *J. Mater. Chem. A*, 2018, **6**, 16932-16942.
- 30 H. T. Zhao, L. Y. Guo, C. W. Xing, H. Y. Liu and X. Y. Li, J. Mater. Chem. A, 2020, 8, 1955-1965.
- 31 S. J. Zhao, J. J. Huang, Q. Y. Huo, X. Z. Zhou and W. X. Tu, J. Mater. Chem. A, 2016, 4, 193-199.
- 32 Z. W. Shao, T. T. Zeng, Y. N. He, D. F. Zhang and X. P. Pu, *Chem. Eng. J.*, 2019, **359**, 485-495.
- 33 S. S. Li, L. Wang, N. Xiao, A. X. Wang, X. L. Li, Y. Q. Gao, N. Li, W. Y. Song, L. Ge and J. Liu, *Chem. Eng. J.*, 2019, **378**, 122220.
- Z. W. Mei, B. K. Zhang, J. X. Zheng, S. Yuan, Z. Q. Zhuo, X. G. Meng, Z. H. Chen, K. Amine, W. L.
  Yang, L. W. Wang, W. Wang, S. F. Wang, Q. H. Gong, J. Li, F. S. Liu and F. Pan, *Nano Energy*, 2016, 26, 405-416.
- 35 X. Y. Zhang, Z. Zhao, W. W. Zhang, G. Q. Zhang, D. Qu, X. Miao, S. R. Sun and Z. C. Sun, *Small*, 2016, **12**, 793-801.
- 36 H. T. Zhao, H. Y. Liu, R. R. Sun, Y. L. Chen and X. Y. Li, *Chemcatchem*, 2018, **10**, 4395-4405.
- 37 K. Li, R. Chen, S. L. Li, S. L. Xie, L. Z. Dong, Z. H. Kang, J. C. Bao and Y. Q. Lan, *ACS Appl. Mater. Interfaces*, 2016, **8**, 14535-14541.
- 38 H. F. Lin, B. W. Sun, H. Wang, Q. Q. Ruan, Y. L. Geng, Y. Y. Li, J. K. Wu, W. J. Wang, J. Liu and X. Wang, Small, 2019, 15, 1804115.