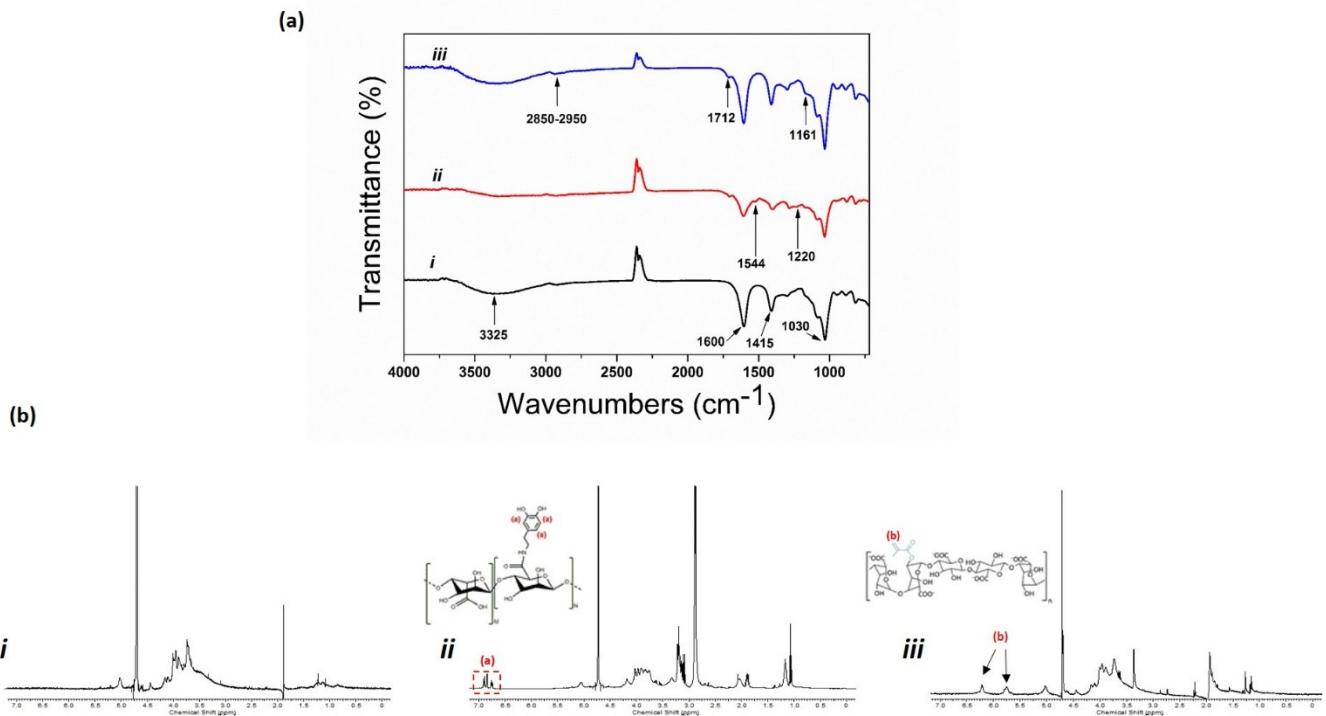
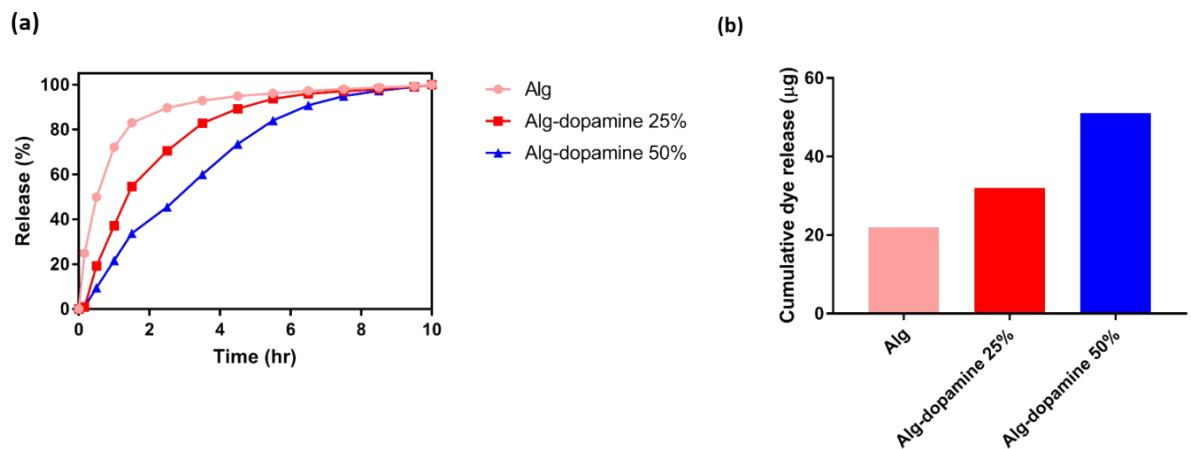


Supporting Information

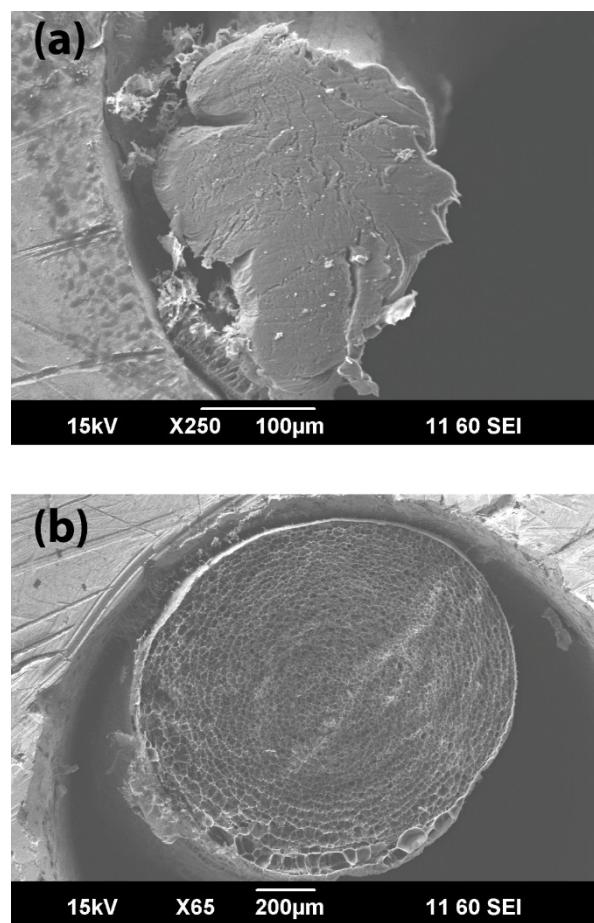
Coaxial mussel-inspired biofibers: Making of a robust and efficacious depot for cancer drug delivery

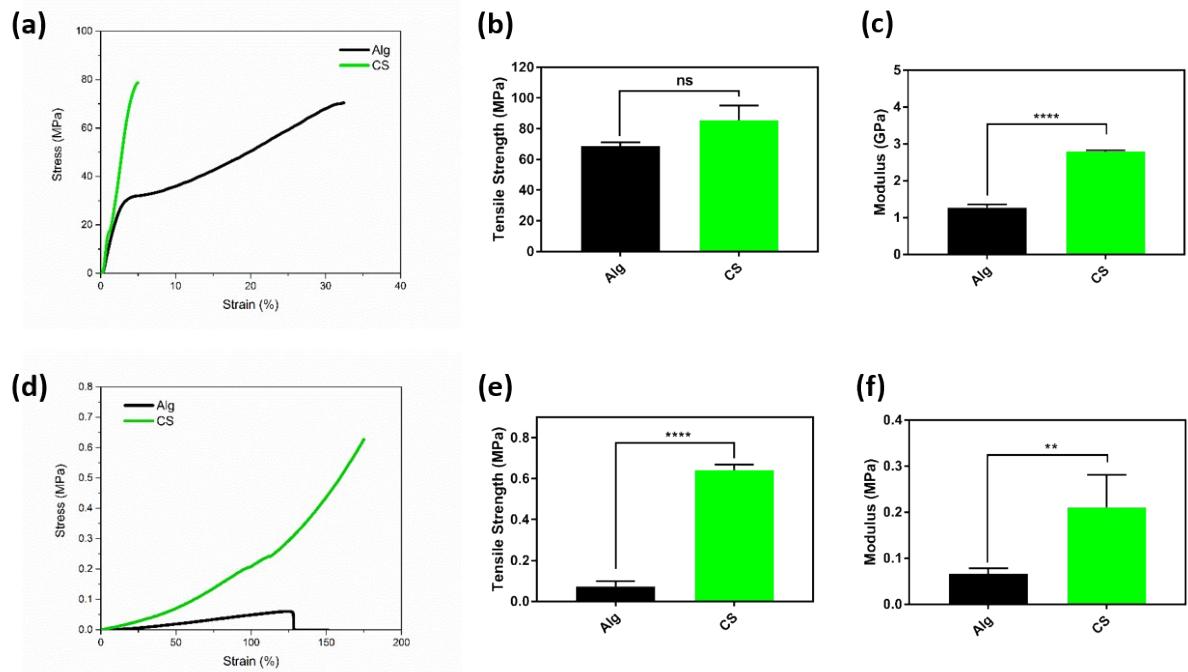

Sepehr Talebian+ , In Kyong Shim+ , Song Cheol Kim * , Geoffrey M. Spinks, Kara L. Vine, Javad Foroughi*

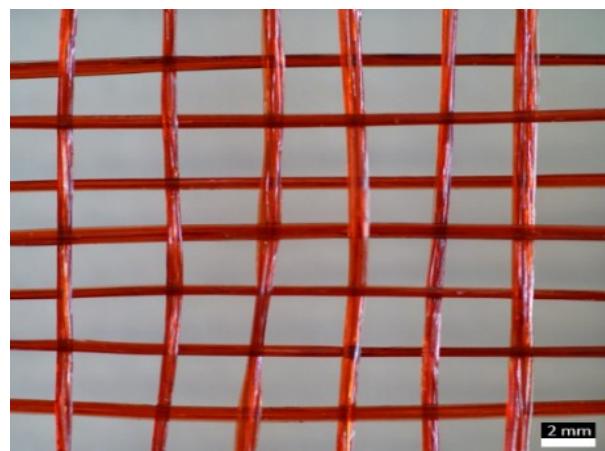
* Correspondence should be addressed to Dr. Javad Foroughi: Foroughi@uow.edu.au & , Prof. Song Cheol Kim: drksc@amc.seoul.kr

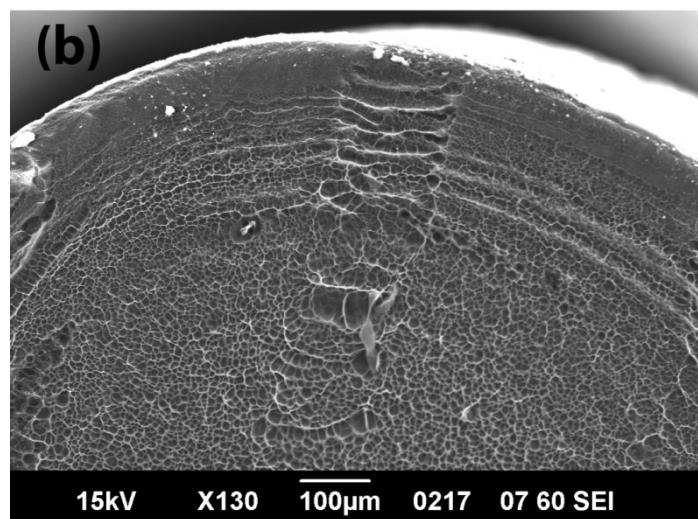
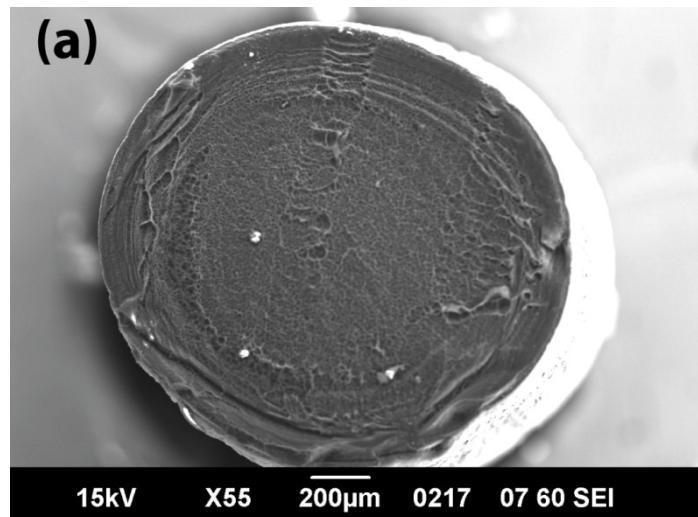

+ The first two authors contributed equally

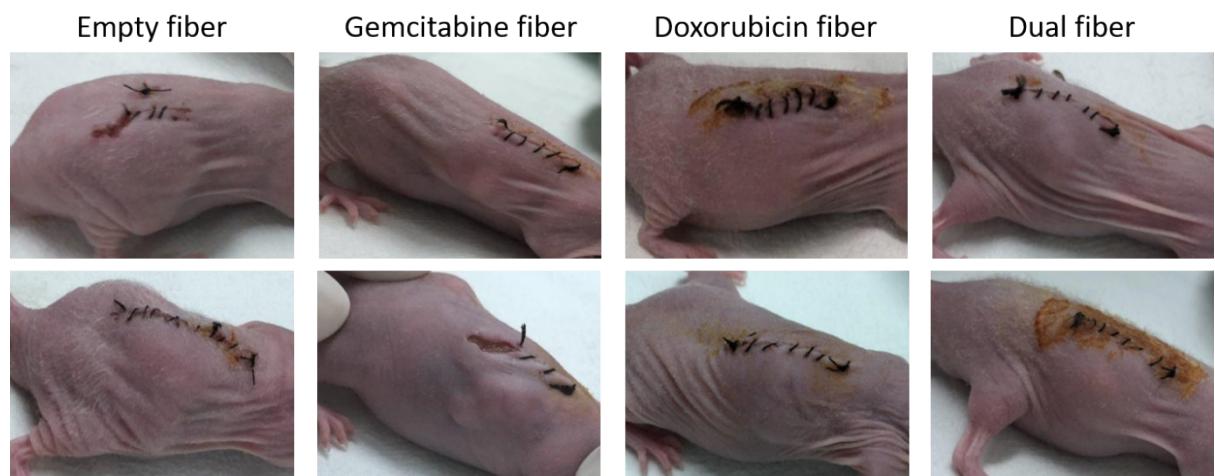
Analysis of dye loaded fibers


Degree of substitution of alginate-dopamine was shown to have a significant effect on the dye release profile and total amount of dye released. Accordingly, fibers made from alginate-dopamine 50% had the slowest release (51 μ gr), followed by the fibers made from alginate-dopamine 25% (32 μ gr) and pure alginate (22 μ gr), respectively (Figure S2, supporting information). Noting, these observations were likely due to strong intramolecular interactions of the dye and the catechol moieties in alginate-dopamine fibers.[1]


Figure S1. Physiochemical characterization of as-synthesized polymers including, (a & b) FTIR and HNMR spectra of i) pure alginate, ii) alginate-dopamione, and iii) alginate-methacrylate.


Figure S2. Preliminary dye release (fluorescein sodium salt, 2mM) studies from single fibers made from pure alginate (Alg), alginate-dopamine 25% (alg-dopamine 25%), alginate-dopamine 50% (Alg-dopamine 50%) **(a)** Release profile of dye loaded fibers. **(b)** Cumulative dye released from the fibers.



Figure S3. Morphology of single fibers made from pure alginate (Alg) using SEM imaging, **(a)** in dry state, **(b)** in complete swollen state after 2 hr of immersion in SBF.


Figure S4. Mechanical properties of fibers following a static tensile test, pure alginate fibers (Alg) or core-shell mussel-inspired fibers (CS), **(a)** Stress-strain curve for fibers in dry state. **(b & c)** Tensile strength and modulus of fibers in dry state ($n = 3$, mean \pm SD). **(d)** Stress-strain curve for fibers in wet state. **(e & f)** Tensile strength and modulus of fibers in wet state ($n = 3$, mean \pm SD) ($^{**}P \leq 0.01$, $^{****}P = 0.0001$).

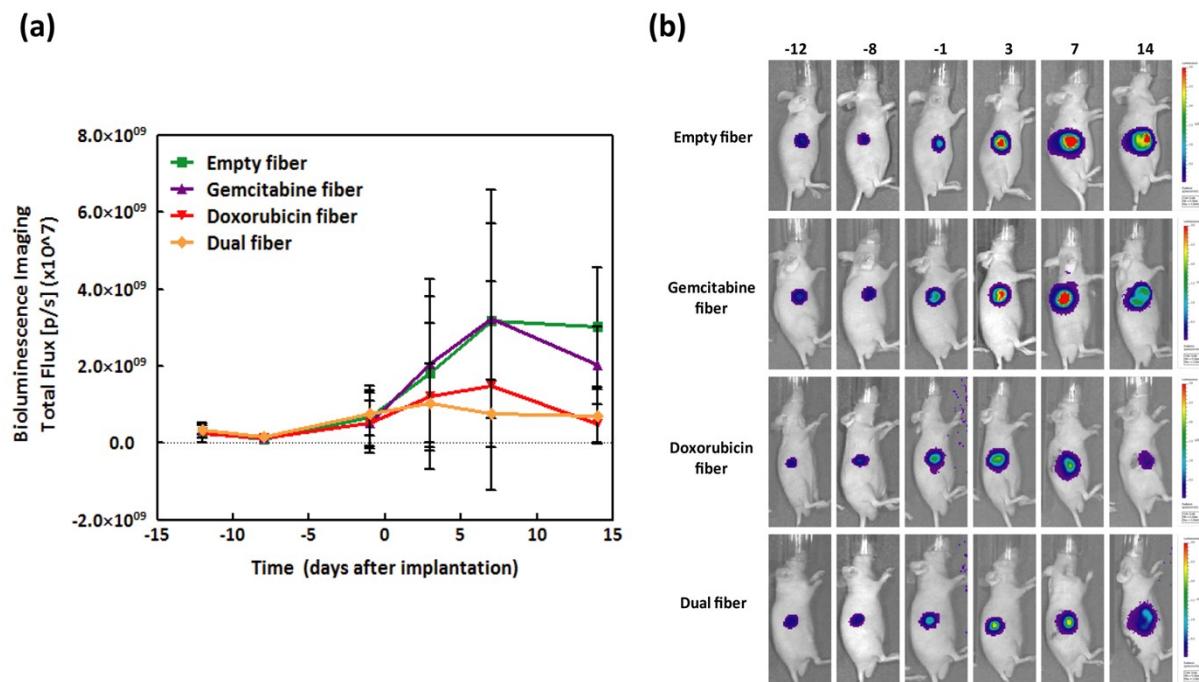

Figure S5. Microscopy image of woven DOX-loaded CS fibers (scale bar 2 mm).

Figure S6. Morphology of wet CS* fibers where both core and shell were made from UV-crosslinkable alginate-methacrylate (3% w/v).

Figure S7. Images of tumor bearing mice (MIA PaCa-2) 2 days after implantation of fibers.

Figure S8. Therapeutic effect of drug loaded CS fibers in subcutaneous BxPC3-Luc tumor model. (a) Quantitative imaging data of BxCP3-Luc tumor growth presented as mean \pm SD. (b) In vivo luciferase images of growing subcutaneous pancreatic tumors (IVIS Spectrum).

Table S1. Hydrodynamic diameter, poly-dispersity index (PDI), and zeta potential of various formulations (n = 5, mean \pm SD).

Formulation	Hydrodynamic diameter (nm)	PDI	Zeta potential (mV)
Alginate	110.9 \pm 0.24	0.235 \pm 0.007	-28.8 \pm 0.36
Alginate+DOX	140.1 \pm 0.49	0.196 \pm 0.003	-30.4 \pm 0.94
Alginate+GEM	126.2 \pm 1.53	0.185 \pm 0.015	-30.5 \pm 0.30
Alginate-methacrylate	205.7 \pm 0.40	0.348 \pm 0.017	-29.9 \pm 0.78
Alginate-methacrylate+DOX	239.0 \pm 0.73	0.440 \pm 0.024	-30.9 \pm 0.67
Alginate-methacrylate+GEM	220.2 \pm 0.55	0.389 \pm 0.014	-30.4 \pm 0.68
Alginate-dopamine	192.8 \pm 1.83	0.352 \pm 0.006	-33.2 \pm 0.86
Alginate-dopamine+DOX	422.0 \pm 0.24	0.383 \pm 0.036	-37.2 \pm 0.69
Alginate-dopamine+GEM	388.0 \pm 0.35	0.465 \pm 0.006	-34.0 \pm 0.69

Table S2. Hematologic parameters from MIA PaCa-2 tumor bearing mice in various treatment groups. Data are presented as average \pm SD (n = 5). WBC: white blood cell, RBC: red blood cell, HGB: hemoglobin, HCT: hematocrit, PLT: platelet, Neut: neutrophils, Lymp: lymphocytes, Mono: monocytes, Luc: large unstained cells.

Hematology	Unit	No treatment		Doxorubicin bolus		Gemcitabine bolus		Dual bolus		Empty fiber		Doxorubicin fiber		Gemcitabine fiber		Dual fiber	
				Day 3	Day14	Day 3	Day14	Day 3	Day14	Day 3	Day14	Day 3	Day14	Day 3	Day14	Day 3	Day14
WBC	10e3/uL	3.97 \pm 0.53	5.87 \pm 0.86	6.85 \pm 0.46	3.20 \pm 0.37	5.84 \pm 0.73	3.06 \pm 0.77	6.98 \pm 1.52	3.75 \pm 0.91	4.52 \pm 0.65	4.57 \pm 1.11	5.24 \pm 1.27	3.41 \pm 1.29	5.02 \pm 0.50	4.79 \pm 1.17	4.02 \pm 0.51	
RBC	10e6/uL	10.08 \pm 0.07	9.93 \pm 0.23	9.81 \pm 0.26	9.98 \pm 0.27	9.99 \pm 0.35	10.20 \pm 0.32	10.40 \pm 0.29	10.07 \pm 0.21	10.20 \pm 0.26	10.46 \pm 0.33	5.42 \pm 0.75	9.88 \pm 0.32	9.29 \pm 1.27	9.66 \pm 0.34	10.07 \pm 0.24	
HGB	g/dL	15.00 \pm 0.43	14.95 \pm 0.10	15.20 \pm 0.33	14.86 \pm 0.34	15.26 \pm 0.27	15.16 \pm 0.27	15.64 \pm 0.26	14.88 \pm 0.56	15.10 \pm 0.52	15.43 \pm 0.50	13.8 \pm 1.16	15.23 \pm 0.23	14.05 \pm 1.84	14.80 \pm 0.27	14.80 \pm 0.44	
HCT	%	50.13 \pm 0.70	49.78 \pm 1.36	49.38 \pm 1.46	48.26 \pm 1.40	50.48 \pm 1.30	48.18 \pm 1.20	51.94 \pm 0.78	48.20 \pm 1.76	51.33 \pm 1.44	50.00 \pm 1.75	47.2 \pm 3.89	49 \pm 0.72	50.00 \pm 1.55	47.38 \pm 1.23	50.53 \pm 1.96	
PLT	10e3/uL	996.75 \pm 73.51	692.25 \pm 212.99	961.80 \pm 258.09	705.00 \pm 73.71	1100.40 \pm 195.05	704.20 \pm 225.01	1215.60 \pm 185.03	1252.5 \pm 217.40	1037.67 \pm 216.16	1417.00 \pm 211.50	1266.25 \pm 189.59	900.33 \pm 102.96	1032.00 \pm 159.61	911.25 \pm 52.78	1239.33 \pm 68.50	
Neut	10e3/uL	1.46 \pm 0.12	2.41 \pm 0.29	2.39 \pm 0.53	0.79 \pm 0.26	2.32 \pm 0.30	0.59 \pm 0.16	2.98 \pm 0.48	1.20 \pm 0.41	2.34 \pm 0.66	3.89 \pm 1.76	3.45 \pm 0.93	1.29 \pm 0.91	2.41 \pm 7.95	2.67 \pm 0.82	2.54 \pm 0.44	
Lymph	10e3/uL	2.30 \pm 0.47	2.85 \pm 0.91	3.30 \pm 1.02	2.04 \pm 0.48	2.90 \pm 0.88	2.17 \pm 0.80	3.36 \pm 1.30	2.26 \pm 0.55	1.94 \pm 0.07	1.85 \pm 0.51	1.50 \pm 0.49	1.88 \pm 0.27	1.85 \pm 0.29	1.90 \pm 0.51	1.21 \pm 0.11	
Mono	10e3/uL	0.07 \pm 0.02	0.22 \pm 0.06	0.25 \pm 0.04	0.08 \pm 0.02	0.32 \pm 0.09	0.06 \pm 0.01	0.40 \pm 0.07	0.09 \pm 0.03	0.08 \pm 0.04	0.03 \pm 0	0.12 \pm 0.02	0.07 \pm 0.02	4.07 \pm 7.95	0.03 \pm 0.01	0.08 \pm 0.01	
Luc	10e3/uL	0.04 \pm 0.01	0.03 \pm 0.01	0.01 \pm 0.01	0.02 \pm 0.01	0.02 \pm 0.01	0.05 \pm 0.02	0.02 \pm 0.01	0.13 \pm 0.01	0.06 \pm 0.01	0.04 \pm 0.02	0.06 \pm 0.02	0.12 \pm 0.08	0.04 \pm 0.02	0.14 \pm 0.04	0.05 \pm 0.01	

Video S1. Video showing the fabrication process of drug loaded coaxial hydrogel fibers through wet-spinning process.

Video S2. Movie showing the swelling of drug loaded coaxial hydrogel fibers in SBF

References

[1] C. Lee, J. Shin, J.S. Lee, E. Byun, J.H. Ryu, S.H. Um, D.-I. Kim, H. Lee, S.-W. Cho, Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility, *Biomacromolecules* 14(6) (2013) 2004-2013.