Supporting Information

Synthesis and Characterisation of Biocompatible Organic-Inorganic Core-Shell Nanocomposite Particles based on Ureasils

Ilaria Meazzini,^{a,b,†} Steve Comby, ^{b,†} Kieran D. Richards^a, Aimee M. Withers^c, François-Xavier Turquet, ^{b,‡} Judith E. Houston ^{b, §¶}, Róisín M. Owens^c and Rachel C. Evans^{a*}

^a Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS, U.K.

^b School of Chemistry & CRANN Trinity College Dublin, Dublin 2, Ireland

^c Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.

[†]These authors contributed equally to this work.

[‡] Present address: Laboratoire de Chimie, ENS Lyon, 46, allée d'Italie, 69364 LYON CEDEX 07, France

§ Present address: European Spallation Source ERIC, Box 176, SE-221 00 Lund, Sweden.

* Corresponding Author: rce26@cam.ac.uk

TABLE OF CONTENTS

1	СНА	RACTERIZATION OF D-UPTES INTERMEDIATE	3
2	SYN	THETIC CONDITIONS USED TO PREPARE UREASIL CORE-SHELL NANOCOMPOSITE	
PA	RTICLI	ES (CSNPS)	4
3	SIZE	AND STABILITY STUDIES ON CSNPS	5
4	EMI	SSION PROPERTIES OF CSNPS DOPED OR GRAFTED WITH FLUORESCENT DYES	7
Z	1.1	STEADY-STATE MEASUREMENTS	7
Z	1.2	TIME-RESOLVED MEASUREMENTS	8

1 Characterization of d-UPTES intermediate

Formation of the d-ureapropyltriethoxysilane (d-UPTES) intermediate was confirmed by Fourier Transform infrared (FTIR) spectroscopy, see Figure S1. The formation of urea linkages between 3-isocyanatopropyltriethoxysilane (ICPTES) and Jeffamine ED-600 results in disappearance of the strong vibrational band corresponding to the isocyanate moieties (2265 cm⁻¹) and the appearance of the features characteristic of urea groups (*e.g.* C=O stretch centred at 1635 cm⁻¹).

Figure S1. FTIR spectra of Jeffamine ED-600 (blue line), ICPTES (red line) and the d-UPTES intermediate (green line).

2 Synthetic conditions used to prepare ureasil core-shell nanocomposite particles (CSNPs)

Method	d-UPTES ^a	THF	NH4OH b	Step 1	Step 2	
	(μ∟)	(μ∟)	(mL)	TEOS (μL)	TEOS (μL)	
А	54.8	671.2	3 mL	24 (50%v/v in THF)	-	
В	54.8	671.2	3 mL	60 (5‰v/v in THF)	60 (5% _{v/v} in THF)	
С	54.8	671.2	3 mL	60 (5‰ _{v/v} in THF)	60 (5% _{v/v} in THF)	

Table S1. Composition of undoped CSNP samples prepared using Methods A, B and C.

^a Stock solution concentration = 0.56 mol L^{-1} in THF.

^b Stock solution concentration = 1×10^{-2} mol L⁻¹ in water

Table S2. Composition of FITC@CSNP samples and reference samples prepared using the covalent grafting approach.

Sample ID	Step 1	Step 2			
	TEOS ^a	TEOS ^a	APTES ^b	FITC-PTES°	
	(μL)	(μL)	(μL)	(μL)	
APTES@CSNs-3	60	57	3	-	
APTES@CSNs-6	60	54	6	-	
APTES@CSNs-15	60	45	15	-	
FITC@CSNs-3	60	57	-	3	
FITC@CSNs-6	60	54	-	6	
FITC@CSNs-15	60	45	-	15	

^a Stock solution concentration = 5% v/v in THF.

^b Stock solution concentration = 2% v/v in THF.

° Stock solution concentration = 22% v/v in THF.

3 Size and stability studies on CSNPs

Figure S2. Dynamic light scattering studies on ureasil CSNPs prepared using Method A. (a) Correlation function and (b) size distribution (hydrodynamic diameter, D_h , of two batches of CSNPs prepared on different days using Method A¹.

Figure S3. Time-dependent stability of CSNPs synthesized using Method A. The change in the hydrodynamic diameter (D_h , red squares) and the polydispersity index (PdI, blue squares) of 3 different samples as a function of time are shown. The solid lines serve only to guide the eye.

¹ See manuscript for details on Method A.

Figure S4. Effect of the tetraethylorthosilicate (TEOS) concentration on the hydrodynamic diameter of CSNPs prepared via Method B² using 20% v/v TEOS and after 4 days of ageing. The peaks centred at ~5 nm represent a population of pure TEOS nanoparticles, while those centred at ~200 nm represent the CSNPs. A minor contribution, which is probably due to dust, is also observed at ~6000 nm.

Figure S5. Effect of base concentration (10-40 mM NH₄OH) and TEOS addition rate (μ l/min for a total duration of 2 hours) on (a) hydrodynamic diameter and (b) polydispersity of CSNPs prepared using Method C.³ (

² See manuscript for details on Method B.

³ See manuscript for details on Method C.

4 Emission properties of CSNPs doped or grafted with fluorescent dyes

4.1 Steady-state measurements

Figure S6. I_3/I_1 fluorescence intensity ratios⁴ for pyrene in water/ethanol mixtures at different volume percentage of water (dye conc. = 2.5×10^{-5} mol L⁻¹). $\lambda_{ex} = 335$ nm.

Figure S7. Normalized absorption (solid lines), emission ($\lambda_{ex} = 420$ nm, dashed lines) and excitation ($\lambda_{em} = 550$ nm, dash-dot lines) spectra of C153 in water (green) and upon incorporation into CSNPs (blue). (dye conc. = 3.6×10^{-5} mol L⁻¹).

 $^{^4}$ See manuscript, Figure 6 for identification of I_1 and I_3 peaks.

Figure S8. Time-dependent stability of APTES⁵- and FITC⁶-doped CSNPs. (a) Hydrodynamic diameter and (b) polydispersity collected over 13 days for APTES@CSNP and FITC@CSNP sample series.

4.2 Time-resolved measurements

Fluorescence decay curves were modelled using an exponential decay function given by:

$$I(t) = \sum_{i} \alpha_{i} \exp(-\frac{t}{\tau_{i}}) \tag{1}$$

where *I* is the fluorescence intensity at time, *t*, and α_i and τ_i are the pre-exponential factor and characteristic lifetime for the *i*th component. In this model the intensity is assumed to decay as the sum of individual single exponential decays. When examining a single fluorophore displaying a complex decay it is generally safe to assume that the fluorophore has the same radiative decay rate in each environment. Thus, in this case α_i represents the fraction of the molecules in each environment at *t*=0.⁷

The fractional contribution f_i of each decay component to the steady-state intensity can be calculated from:

$$f_i = \frac{\alpha_i \tau_i}{\sum \alpha_i \tau_i} \tag{2}$$

⁵ APTES = 3-aminopropyl)triethoxysilane

⁶ FITC = fluorescein isothiocyanate

⁷ J. R. Lakowicz, in *Principles of Fluorescence Spectroscopy*, Springer, 2006, pp. 142.

Figure S9. Time-resolved fluorescence investigation of FNa and FITC@CSNPs. Emission decay curves (black dots) and fits (coloured lines) for (a) FNa+APTES and FNa-APTES@CSNPs and (b) FITC-PTES and FITC-PTES@CSNPs before and after dialysis 1 (d1, 24 hours) and dialysis 2 (d2, 48 hours in total) (λ_{ex} = 458 nm and λ_{em} = 515 nm). The weighted residuals for each fit and the instrument response function (IRF, dotted line) are also shown.

Table S3. Time-resolved photoluminescence analyses of FITC-grafted ureasil CSNPs. Decay times (τ_i), fractional contributions (f_i) and chi-squared values (χ^2) resulting from analysis of the decay curves of FNa-APTES, FITC-PTES, FNa-APTES@CSNPs and FITC-PTES@CSNPs, before and after dialysis 1 (d1) and dialysis 2 (d2) ($\lambda_{ex} = 458$ nm, $\lambda_{em} = 515$ nm).

Sample ID	τ ₁ (ns)	f ₁	τ ₂ (ns)	f2	χ²
FNa + APTES	4.06 (±0.01)	1.00 (±0.02)			1.03
FNa-APTES@CSNs	4.08 (±0.01)	1.00 (±0.01)			1.01
FNa-APTES@CSNs-d1	4.03 (±0.01)	1.00 (±0.01)			1.08
FNa-APTES@CSNs-d2	4.02 (±0.01)	1.00 (±0.02)			1.02
FITC-PTES	3.78 (±0.01)	1.00 (±0.04)			1.03
FITC-PTES@CSNs-3	3.78 (±0.02)	0.44 (±0.01)	2.08 (±0.04)	0.56 (±0.01)	1.06
FITC-PTES@CSNs-3-d1	3.86 (±0.01)	0.67 (±0.05)	1.75 (±0.04)	0.33 (±0.03)	1.11
FITC-PTES@CSNs-3-d2	3.85 (±0.01)	0.65 (±0.05)	1.73(±0.02)	0.35 (±0.03)	1.05