Electronic Supporting Information

Multivalent cationic dendrofullerenes for gene transfer: synthesis and DNA complexation

Beatriz M. Illescas,^{*[a]} Alfonso Pérez-Sánchez,^[a] Araceli Mallo,^[b] Ángel Martín-Domenech,^[a] Ignacio Rodríguez-Crespo,^{*[c]} and Nazario Martín^{*[a,d]}

 ^[a] Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid (Spain), Email: <u>beti@ucm.es</u> and <u>nazmar@ucm.es</u>
^[b] Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid 28223, Spain
^[c] Departamento de Bioquímica, Facultad de Química, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid (Spain), Email: <u>jirodrig@ucm.es</u>
^[d] IMDEA-Nanoscience, C/ Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain.

Table of Contents	S1
General	S2
¹ H NMR (top) and ¹³ C NMR (bottom) spectra of amino compounds	S3
¹ H NMR (top) and FTIR (bottom) spectra of cationic compounds	S13
Determination of the N/P ratios	S17
Cytotoxicity assay	S17
DLS Experiments	518

General. Reagents and solvents were purchased as reagent grade and used without further purification. $1-(chloromethyl)-3,5-bis(prop-2-yn-1-yloxy)benzene (1a),^1 5-$

(chloromethyl)-1,2,3-tris(prop-2-yn-1-yloxy)benzene $(1b)^2$ and *tert*-butyl (2-(2-(2-azidoethoxy)ethoxy)ethyl)carbamate $(2)^3$ were prepared according to previously reported procedures. For column chromatography, silica gel 60 (230-400 mesh, 0.040-0.063 mm) was purchased from Scharlab. Thin Layer Chromatography (TLC) was performed on aluminium sheets coated with silica gel 60 F₂₅₄ purchased from E. Merck, visualization by UV light. IR spectra (cm⁻¹) were measured on a Bruker Tensor 27 instrument equipped with an ATR device FTIR instrument and using KBr for water-soluble compounds or dissolved in the proper solvent when possible. NMR spectra were recorded on a Bruker AC 300, AC 500 or AC 700 with solvent peaks as reference. ¹H and ¹³C NMR spectra were obtained for solutions in CDCl₃ and DMSO-d⁶. All the assignments were confirmed by two-dimensional NMR experiments.

¹H NMR (top) and ¹³C NMR (bottom) spectra of amino compounds.

Compound 3a.

¹ Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem. Int. Ed. **2004**, *43*, 3928-3932.

² Qin, T.; Li, X.; Chen, J.; Zeng, Y.; Yu, T.; Yang, G.; Li, Y. Chem. Asian J. **2014**, *9*, 3641-3649.

³ Itoh, Y.; Ishikawa, M.; Kitaguchi, R.; Sato, S.; Naito, M.; Hashimoto, Y. *Bioorg. Med. Chem.* **2011**, *19*, 3229-3241.

 $^{\rm 13}{\rm C}$ NMR spectrum (125 MHz, CDCl₃) of compound ${\bf 3a}$

Compound 3b.

 ^{13}C NMR spectrum (125 MHz, CDCl_3) of compound 3b

Compound 4a.

 ^1H NMR spectrum (500 MHz, CDCl₃) of compound 4a

 $^{\rm 13}{\rm C}$ NMR spectrum (125 MHz, CDCl₃) of compound ${\rm 4b}$

Compound 6a.

 $^{\rm 13}C$ NMR spectrum (175 MHz, CDCl₃) of compound $\bf 6a$

Compound 9.

 ^{13}C NMR spectrum (175 MHz, CDCl_3) of compound ${\bf 9}$

Compound 10.

 $^{\rm 13}{\rm C}$ NMR (175 MHz, CDCl_3) of compound ${\bf 10}$

Compound 11.

 ^{13}C NMR (175 MHz, CDCl_3) of compound 11

¹H NMR (top) and FTIR (bottom) spectra of compounds 7a-c and 12.

FTIR spectrum (KBr) of compound 7a

Compound 7b.

FTIR spectrum (KBr) of compound 7b

Compound 7c.

FTIR spectrum (KBr) of compound 7c

Compound 12.

FTIR spectrum (KBr) of compound 12

Determination of the N/P ratios

An average molecular mass of 618 g/mol was considered for each A:T or G:C pair. The EGFP-C1 plasmid has 4700 base pairs and a molecular mass of 2904600 g/mol. Each phosphate group provides one negative charge. That means that each plasmid molecule has 9400 negative charges. In the assays we add 1 μ g of plasmid, which in equivalent to 3.44 \cdot 10⁻¹³ mol. Considering the Avogadro number we can calculate 2.074 10¹¹ plasmid units per assay. In summary, for 1 μ g of added plasmid we have 1.95 10¹⁵ total negative charges. Considering the molecular masses of the fullerene compounds and the amount added, we could obtain the following N/P ratios:

	40 µM	8 μΜ	1.6 µM	0.32 μΜ	0.064 μΜ
7a	7.4	1.5	0.3	0.06	0.012
7b	15	3	0.6	0.12	0.025
7c	22.25	4.4	0.9	0.18	0.037
7d	74	15	3	0.6	0.12

Table S1. N/P Ratios calculated for the concentrations employed in the transfection experiments

Cytotoxicity assay

Figure S1. The cytotoxicity exerted by the various fullerene compounds when complexed to plasmidic DNA was determined 12 hours post-addition of the complexes. The amount of dead cells was counted in a field of approximately 1000 cells in total.

Figure S2. The figure shows an overlay of bright field and 405 nm excitation of confluent HEK293 cells incubated with compound **7a** complexed with plamidic DNA. Emission of blue fluorescence correspond to dead cells with fragmented membranes and the Hoechst dye labelling the cell nuclei. Bar, 50 μ M.

DLS experiments

For compounds **7a-c** and **12**, Dynamic Light Scattering measurements were carried out at 25°C on an ALV GSC08 correlator working in a cross correlation mode with an Ar+ laser operating at λ = 514.5 nm. The output signals were obtained with backscatter detection at an angle of 90° and processed with a digital correlator that computed intensity-intensity autocorrelation of the scattered light. Measurements were made in a 1-cm path-length round quartz cell maintained at 298 K. Solution samples of 10⁻⁴ M in PBS buffer were filtered through nylon Acrodisc syringe filters (Pall Life Sciences) with 0.2-µm pore size.

Figure S3. Representative DLS for 7a-c and 12, intensity vs. particle size distribution.