Electronic Supplementary Information

Facile Synthesis of Monodisperse Chromogenic Amylose-Iodine Nanoparticles as an Efficient Broad-Spectrum Antibacterial Agent

Yanbin Sun^{a#}, Xianwen Wang^{a#}, Linxin Fan^a, Xianli Xie^b, Zhaohua Miao^a, Yan Ma^a, Tao He^{b*} and Zhengbao Zha^{a*}

^a School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.

^b School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.

* Corresponding author. Email: <u>zbzha@hfut.edu.cn</u>; <u>taohe@ hfut.edu.cn</u>; Tel: +86 551 62901285.

Calculation of the photothermal conversion efficiency

To calculate the photothermal conversion efficiency of AM-I NPs, 1 mL of AM-I NPs aqueous solution (90 μ g/mL) was continuously irradiated under the same condition until reaching a steady-state temperature. The laser was then shut off and the temperature decrease process was also recorded. the photothermal conversion efficiency (η) was calculated using equation (1) described by Roper¹:

$$\eta = \frac{hS(T_{max} - T_{surr}) - Q_s}{I(1 - 10^{-A_{808}})}$$
(1)

where *h* is the heat transfer coefficient, *S* is the surface area of the container, T_{max} is the maximum system temperature, T_{surr} is the ambient surrounding temperature, Q_s is the heat associated with the light absorbance of the solvent, *I* is the laser power (2 w) and A_{808} is the absorbance of AM-I NPs at 808 nm. The value of *hS* is derived according to equation (2):

$$\tau_{s} = \frac{m_{D}C_{D}}{hs}$$
(2)

where τ_s is the sample system time constant, m_D and C_D are the mass (1 g) and heat capacity (4.2 J/ (g.°C)) of deionized water, respectively. Q_s is measured independently to be 12.6 mW using pure water. In order to get the value of hS, we further introduce ϑ , which is defined as follows:

$$\theta = \frac{T - T_{surr}}{T_{max} - T_{surr}}$$
(3)

where T is the solution temperature. Thus, hS can be determined by applying the linear time data from the cooling period vs– $In\vartheta$.

Fig. S1 Raman spectra of AM NPs and AM-I NPs.

Fig. S2 a) The UV-vis-NIR absorption spectrum and b) digital photograph of different mass ratio between AM NPs and $KI-I_2$.

Fig. S3 The change of AM-I NPs before heating, holding temperature and cooling down. a) Digital photograph and thermal image; b) UV-vis-NIR spectra.

Fig. S4 Calculation of the photothermal conversion efficiency according the data of time and negative natural logarithm of the temperature.

Fig. S5 The standard curve of KI-I₂ solution (λ =225 nm).

Fig. S6 The cumulative release amount of iodine from AM-I NPs at different times.

Fig. S7 Cell biocompatibility of AM-I NPs and KI-I₂ in gradient concentration for 24 h.