Sensitive Detection of Clenbuterol by Hybrid Iridium/Silicon Nanowires-Enhanced Laser Desorption/Ionization Mass Spectrometry

Rui Lv[†]a, Enhui Wu[†]a, Renfei Wu[†]a, Wen Shen a, Chongqing Ma a, Rui Shi a, Ruochen Guo a, Mingwang Shao a and Jian Liu *a

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province 215123, China. Email: jliu@suda.edu.cn

Abstract

There is an increasing demand in anti-doping drug monitoring in sports and food safety check by developing sensitive and fast analytical methods. Here we report the development of hybrid Ir/SiNW as a new MALDI matrix for detection of small molecules. This matrix is characteristic of sufficient UV absorption, low-noise background, and high efficiency in ionization of small molecules. Sensitive detection of clenbuterol (LOD: 0.18 pmol) and varieties of other small molecules have been achieved using Ir/SiNW matrix with a reproducible performance. Compared to the individual components separately, the matrix of hybrid Ir/SiNW synthesized via *in situ* growth can promote the MS signal intensity by up to 10 folds in the identical experimental conditions. We provide a unique mechanism for the high performance of hybrid Ir/SiNW matrix with the characteristic properties of hydrogen atom transferring and enhanced protonation at the interface of the hybrid nanostructures. Our approach of using hybrid Ir/SiNW matrix enables detection of clenbuterol quantitatively in complicated biological samples and *in vivo* experiments, promising a useful tool for food security and anti-doping drug monitoring in sports.

Fig. S1 Mass spectra of small molecular analytes in different categories using hybrid on Ir/SiNW matrix. (A) Glucose, (B) Maltose, (C) Ala-Gln, (D) DMT-[D-Arg-Phe-Lys]-NH₂, (E) Histidine, (F) Glutamate, (G) Tributyrin, (H) Sulfamethoxazole. Concentration: 100 mg/L. The relative laser power is 30 %. Each laser spot size is about 50 μm, each mass spectrum adds up to 3000 laser spots.

Fig. S2 Mass spectra of Brombuterol and Salbutamol using Ir/SiNW matrix. (A-B) Brombuterol, (C-D) Salbutamol, (E-F) Mixture of Brombuterol, Salbutamol and Clenbuterol. A, C and E prepared with DI water; B, D and F prepared with mouse serum. Concentration: 100 mg/L. Laser spot size: 50 μm. Accumulation: 3000 laser spots for each spectrum.

Fig. S3 Highly reproducible MS signal intensity by using the Ir/SiNW matrix. Analyte: clenbuterol. (A) 9 different spots in the 3 x 3 array. (B) 9 different positions in a single spot of analyte/ Ir/SiNW. The coefficient of variation (CV) values: only 5.4% spot-to-spot tests or 4.3% in the position-to-position tests. Insets: the photos of the spots deposited on the MALDI plate containing the analyte/matrix.

Fig. S4 Evaluation of MS signal reproducibility using different types of inorganic matrices for comparison. (A, C, E) 9 separate spots in the 3 × 3 array. (B, D, F) 9 different positions in a single spot of analyte/matrix. Insets: The photos of the spots deposited on the MALDI plate containing the analyte/matrix as specified. Matrices: Au nanoparticles (A, B), graphene oxide nanosheets (C, D), bare silicon nanowires (E, F). Analyte: clenbuterol.

Fig. S5 Mass spectra of CL using Ir, SiNW, and Ir/SiNW matrices. The MALDI MS detection was performed in the positive-ion mode.

Fig. S6 Evaluation of organic matrices for the detection of CL, including (A) CHCA, (B) DHB, and (C) SA. Error bar: standard deviation (n=3).

Fig. S7 Electrochemical impendence spectroscopy (EIS) analysis of Ir/SiNW, Ir nanoparticles, and bare SiNW. EIS measurements recorded between 1x10⁵ Hz and 0.1 Hz with a sinusoidal voltage perturbation of 5 mV amplitude.

Fig. S8 Mass spectrum of the blank mouse blood sample without clenbuterol, after the identical procedure of sample pretreatment.

 Table S1 Performance of Ir/SiNW matrix-assisted MALDI MS in comparison to other analysis techniques.

Method	Analyte	R ²	LOD*(pmol)	Concentration range (mg/L)	Internal standard	Sample Volume (µL)	Extraction procedure	Reproducibility
MALDI-TOF MS (our method)	clenbuterol	0.998	0.18	1-100	Clenbuterol-D9	1	3 steps	CV < 5.4%
HPLC ³³	clenbuter ol	0.99	2.8x10 ⁻³	(1.38-5.52) x10 ⁻³	/	20	6 steps	CV: 4.5-8.5%
HPLC-MS ³⁴	ractopamine	0.999	0.507	5-1000	/	100	7 steps	CV > 5.8%
LC-ESI-TOF MS35	clenbuterol	0.998	9.42 x10 ⁻⁴	(0.013-10) x10 ⁻³	Mabuterol	20	7 steps	CV: 1.3-7.0%
LC-MS/MS ³⁶	clenbuterol	0.999	9.05 x10 ⁻⁴	(0.01-1) x10 ⁻³	Clenbuterol-D9	25	5 steps	CV: 0.7-17.9%
CE-UV ³⁷	clenbuterol	0.999	0.137	2-100	Terbutaline	40	8 steps	1
iEESI-MS38	Six <i>β</i> -agonists	0.999	1	1	7	100	1	RSD: 6.5-11.3%
Electrochemical detection aptasensor ³⁹	clenbuterol	0.991	0.181	(0.1-500) x10 ⁻⁶	1	5x10 ³	1	RSD: 2.09%

LOD*: limit of detection.

CV: coefficients of variation.

RSD: relative standard deviation.

/: Not Available.

Table S2 Performance comparison of silicon-based matrices and other inorganic nanomaterials for MALDI mass spectrometry

		Analyzed Molecules	LOD (S/N = 3)	Reproducibility	Mass spectra range	Concentration range (mg/L)
Silicon-based matrices	Ir/SiNW (This work)	clenbuterol	0.18 pmol	CV: ~ 5%	m/z 0-800	1-100
	Silicon nanopillar arrays ^{40, 41}	methadone	0.31 pmol	/	m/z 270-3000	0.02-2
	Silicon nanopowder ^{40, 42}	propafenone, verapamil et al.	33 fmol - 100 pmol	1	m/z 0-1000	0.003-455
	Periodic mesoporous organosilica (PMO) films ^{40, 43}	peptides	~ 0.6 pmol	/	m/z 500-1800	/
Other inorganic nanomaterials	Au NPs ⁴⁴	glutathione, angiotensin I, insulin	2 - 100 pmol	CV: 18-29%	m/z 300-1300	1.5-61.2
	Graphene Oxide ⁴⁵	tetracyclines	2 fmol	RSD: 2.33%	m/z 0-800	0.08-44.4
	Oxidized carbon nanotubes ⁴⁶	berberine, jatrorrhizine, palmatine	~ 3 fmol	RSD < 10%	m/z 0-3000	1-100
	Carbon nanodots ⁴⁷	amino acids, peptides et al.	2 fmol - 0.5 pmol	RSD < 4.2%	m/z 0-1000	90-1620