Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020.

Supplementary Information

Phosphorylcholine-based zwitterionic copolymer coated ZIF-8 nanodrug with long circulation and charged conversion for enhanced chemotherapy

Ruihong Xie,^a Peng Yang,^b Shaojun Peng,^a Yongbin Cao,^a Xianxian Yao,^a Shengdi Guo^a and Wuli Yang^{*a}

^{*a*} State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China. Email: wlyang@fudan.edu.cn.

^b School of Life Science and Technology, Xidian University, Shanxi, Xi'an 710071, P. R. China

Figure S1. The ¹H-NMR spectra of C7A monomer. **1H NMR** (TMS, CDCl₃, ppm): 6.09 (br, 1H, C*H*H=C(CH₃)-), 5.55 (br, 1H, CH*H*=C(CH₃)-), 4.24 (t, J = 6.5 Hz, 2H, -OCH₂CH₂N-), 2.84 (t, J = 6.5 Hz, 2H, -OCH₂CH₂N-), 2.72 (m, 4H, -N(CH₂CH₂CH₂)₂), 1.94 (s, 3H, CH₂=C(CH₃)-), 1.63-1.58 (m, 8H,-N(CH₂CH₂CH₂)₂).

Figure S2. The higher magnification TEM images of the DOX@ZIF-8 (a), DOX@ZIF-8@PMPC (b), DOX@ZIF-8@P(MPC-*co*-C7A) (c) and ZIF-8@PMPC-DOX (d). Scale bars were 50 nm.

Figure S3. The Fourier transform infrared spectra of the DOX@ZIF-8, DOX@ZIF-8-MPS, ZIF-8@PMPC-DOX, DOX@ZIF-8@PMPC and DOX@ZIF-8@P(MPC-*co*-C7A). The peak at 1640 cm⁻¹ belongs to carbon-carbon double bonds. The peak at 1074 cm⁻¹ belongs to P-O bond.

Figure S4. The X-ray photoelectron spectroscopy (XPS) spectra of the DOX@ZIF-8, ZIF-8@PMPC-DOX, DOX@ZIF-8@PMPC and DOX@ZIF-8@P(MPC-*co*-C7A).

Figure S5. Thermogravimetric analysis curve of DOX@ZIF-8, ZIF-8@PMPC-DOX, DOX@ZIF-8@PMPC and DOX@ZIF-8@P(MPC-*co*-C7A) in the atmosphere of N₂.

Figure S6. Nitrogen adsorption-desorption isotherms (a) and pore size distribution curves (b) for DOX@ZIF-8, ZIF-8@PMPC-DOX, DOX@ZIF-8@PMPC and DOX@ZIF-8@P(MPC-*co*-C7A).

Figure S7. Powder X-ray diffraction patterns of DOX, ZIF-8, DOX@ZIF-8, ZIF-8@PMPC-DOX, DOX@ZIF-8@PMPC and DOX@ZIF-8@P(MPC-*co*-C7A).

Figure S8. TEM images of ZIF-8.

Figure S9. The hydrodynamic size (a) and zeta potential (b) change of DOX@ZIF-8, ZIF-8@PMPC-DOX, DOX@ZIF-8@PMPC and DOX@ZIF-8@P(MPC-*co*-C7A) after incubation in 10 mM GSH at pH 7.4 or pH 6.5 for 2 h.

Figure S10. The TEM images of DOX@ZIF-8, ZIF-8@PMPC-DOX, DOX@ZIF-8@PMPC and DOX@ZIF-8@P(MPC-*co*-C7A) after incubation at pH 5.0 for 24 h.

Figure S11. The variation of particle size of the DOX@ZIF-8, ZIF-8@PMPC-DOX, DOX@ZIF-8@PMPC and DOX@ZIF-8@P(MPC-*co*-C7A) at pH 7.4 (a) or 6.5 (b).

Figure S12. UV-Vis spectra of DOX, DOX@ZIF-8, ZIF-8@PMPC-DOX, DOX@ZIF-8@PMPC and DOX@ZIF-8@P(MPC-*co*-C7A) at pH 7.4 PBS solution.

Figure S13. The DOX release of DOX@ZIF-8 at different pH values.

Figure S14. The DOX release of DOX@ZIF-8@n-P(MPC-*co*-C7A) at different pH without (a) or with (b)10 mM of GSH.

Figure S15. Confocal microscopic images of free DOX (a), DOX@ZIF-8 (b), ZIF-8@PMPC-DOX (c), DOX@ZIF-8@PMPC (d) and DOX@ZIF-8@P(MPC-co-C7A) (e) at pH 7.4 or 6.5 (scale bar:100 µm).

Figure S16. The confocal microscopic images of A549 cells treated with DOX@ZIF-8@n-P(MPC-*co*-C7A) at pH 7.4 or 6.5, respectively. Scale bar was 100 μm.

Figure S17. Mean fluorescence intensity of A549 cells incubation with DOX, DOX@ZIF-8, ZIF-8@PMPC-DOX, DOX@ZIF-8@PMPC and DOX@ZIF-8@P(MPC-*co*-C7A) at pH 7.4 or 6.5. The tests repeated for three times.

Figure S18. The cell viability of A549 cells incubation with DOX@ZIF-8@n-P(MPC-*co*-C7A) at pH 7.4 or 6.5 for 24 h.

Figure S19. (a) Fluorescence emission spectra of free DOX at different concentrations in n-butyl alcohol solution. (b) Linear curve was fitted from the fluorescence intensity of free DOX. ($\lambda em = 590 \text{ nm}$)

Figure S20. The biodistribution of free DOX in tumor-bearing mice at 1 h after intravenous injection.

Figure S21. The fluorescence images of A549 tumor-bearing mice after injection with free Cy 7 and Cy 7@ZIF-8@P(MPC-*co*-C7A) through the tail vein at different times. Red circles indicate tumor sites.

Figure S22. (a) Photographs of tumors at the end of the experiment. (b)Tumor growth curves after intravenous administration of PBS, ZIF-8@P(MPC-*co*-C7A), DOX@ZIF-8@P(MPC-*co*-C7A) and DOX@ZIF-8@n-P(MPC-*co*-C7A). Treatments were performed on day 0, 3, 6 (n=5).

Figure S23. TUNEL staining of tumor sections 14 days after treatment. Nuclei and apoptotic cells were stained blue and green, respectively. Scale bar was 200 µm.

Figure S24. H&E-stained slices of major organs including heart, liver, spleen, lungs, and kidneys from each group. Scale bar was 50 µm.

Figure S25. Photos of hemocompatibility experiments of the saline (a), distilled water (b) DOX@ZIF-8 (c), ZIF-8@PMPC-DOX (d), DOX@ZIF-8@PMPC (e) and DOX@ZIF-8@P(MPC-*co*-C7A)(f).

Figure S26. Blood biochemistry indices of hepatic and renal function after 24 h injection (aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) creatinine (CREA) and UREA).

Table S1. Whole blood panel analysis of nanoparticle-treated mice at 24 h injection. Normal mice without any treatment were used as a negative control.

	Unit	Control	DOX@ZIF-8@P(MPC-co-C7A)
WBC	X 10 ⁹	6.0 ± 1.0	5.1±0.5
	cells/L		
RBC	X 10 ¹²	6.4 ± 0.1	5.5±1.6
	cells/L		
HGB	g/L	100.3 ± 11.0	98±10.1
НСТ	%	43.8±7.9	43.7±3.8
MCV	fL	75.5 ± 4.0	77.9±2.8
МСН	pg	17.4±1.7	17.6±1.2
MCHC	g/L	225.0 ± 10.9	224.3±9.9
RDW	%	16.8 ± 0.4	16.7±0.6
PLT	X 10 ⁹	267.0 ± 70.3	277.3±77.4
	cells/L		

WBC, white blood cell; RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red blood distribution width; PLT, platelets.