Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Two-dimensional FeP@C nanosheets as a robust oxidase mimic for fluorescence detection of cysteine and Cu²⁺

Chan Song,* Weiwen Zhao, Haibo Liu, Wei Ding, Linlin Zhang, Jie Wang, Yuewei

Yao and Cheng Yao*

School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.

Email: <u>songchan@njtech.edu.cn</u> Email: <u>yaocheng@njtech.edu.cn</u>

Figure S1. (a) and (b) Typical SEM images of Fe@C nanosheets. (c) AFM image of FeP@C nanosheets. (d) AFM 3D height profile of FeP@C nanosheets.

Figure S2. High-resolution XPS patterns for Fe 2p (a) and P 2p (b) regions of FeP@C nanosheets.

Figure S3. (a) Fluorescence signals at 585 nm of different concentration of AR with and without FeP@C nanosheets (50 mg L⁻¹). (b) The stability test of FeP@C nanozymes. (c) The reusability of FeP@C nanozymes. (d) PXRD patterns of the as-synthesized, immersed and recycled FeP@C nanosheets. The immersed FeP@C nanosheets were dispersed in Tris-HCl buffer of different pH for 30 min and then separated with filtration.

Figure S4. EPR spectra of FeP@C nanosheets with DMPO (100 mM).

Figure S5. (a) Steady-state kinetic assay of the catalytic system of FeP@C nanosheets (5 mg L⁻¹). (b) Lineweaver-Burk plot of the double reciprocal of the Michaelis-Menten equation.

Figure S6. (a) Fluorescence emission spectra of FeP@C nanosheets (50 mg L⁻¹) and AR (2 μ M) with and without Cys (80 μ M) and Cu²⁺ (1 μ M). (b) Selectivity of FeP@C sensing system for Cu²⁺ assay. The concentration of Cu²⁺ is 0.25 μ M and the amounts of other mental ions are 1 μ M. (c) Fluorescence emission spectra of the sensing system with different amount of Cu²⁺ (0, 0.5, 1.5, 4, 10, 25, 50, 75, 100, 125, 150, 200, 250, 300, 500, 1000 nM). (d) Cu²⁺ concentration-dependent change ($\Delta F = F - F_0$) in the fluorescence signal at 585 nm. Inset: the linear calibration plot for Cu²⁺ detection. *F* and *F*₀ are the fluorescence intensity of FeP@C nanosheets/AR/Cys system with and without Cu²⁺, respectively.

Target	Methods	Linear range	Detection limit	Reference
Cys	Fluorescence method based on two novel BODIPY-based fluorescent probes	0 ~ 50 μM	0.095 μM	1
	Colorimetric and near-infrared fluorescence method based on a naphthofluorescein probe	0 ~ 25 μM	0.18 μΜ	2
	Fluorescence method based on red emission nitrogen, boron, sulfur co-doped carbon dots	0.1 ~ 20 μM	0.045 μM	3
	Fluorescence method of an excited-state intramolecular proton transfer (ESIPT)-based aggregation-induced emission active probe	0~8μM	0.084 μM	4
	Colorimetric method based on gold nanoparticles (Au-NPs)	0.17 ~ 1.7 μM	0.1 μΜ	5
	Colorimetric method based on oxidase mimics of Ce-MOF	0 ~ 40 μM	0.14 μM	6
	Colorimetric method based on oxidase mimics of perovskite LaMnO $_{3+\delta}$ nanofibers	2 ~ 20 μM	0.11 μΜ	7
	Colorimetric method based on oxidase mimics of 9-Mesityl-10-Methylacridinium Ion	0.1 ~ 20 μM	0.10 μΜ	8
	Colorimetric method based on oxidase mimics of hollow MnCo ₂ O ₄ nanofibers	0.5 ~ 10 μM	0.034 μM	9
	Fluorescence method based on oxidase mimics of Co-based metal organic frameworks (ZIF-67)	0.05 ~ 6 μM	0.031 μM	10
	Fluorescence method based on FeP@C nanosheets	0.04 ~ 10 μM	0.026 μM	This work
Cu²+	Colorimetric and fluorescence method based on a rhodamine hydrazine probe	3 ~ 32.5 μM	86.8 nM	11
	Fluorescence method based on carbon dots (CDs)	0 ~ 10 μM	23 nM	12
	Fluorescence method based on ultrathin graphitic carbon nitride nanosheet (g-C ₃ N ₄)	0 ~ 10 μM	0.5 nM	13
	Fluorescence method based on DNA oligonucleotide-stabilized silver nanoclusters (DNA-Ag NCs)	10 ~ 200 nM	8 nM	14
	Fluorescence method based on cubic mesoporous graphitic carbon (IV) nitride	10 ~ 100 nM	12.3 nM	15
	Colorimetric method based on oxidase mimics of nano-MnO ₂	2 ~ 250 μM	< 2 µM	16
	Fluorescence method based on FeP@C nanosheets	0.5 ~ 250 nM	0.21 nM	This work

Table S1. Comparison of different materials-based sensing platforms for Cys and Cu²⁺ detection.

	Cys (μM)				
Samples -	Added		- Recovery (%)		
	0.50	0.53	0.53	0.52	105.20 ± 1.73
serum sample	2.0	2.00	1.89	1.83	95.31 ± 4.51
	3.0	3.03	3.17	2.82	100.24 ± 5.91
	0.50	0.49	0.56	0.48	102.48 ± 8.78
serum sample with other 19 amino	2.0	1.93	2.02	2.08	100.50 ± 3.68
acids	3.0	2.98	2.85	2.91	97.17 ± 2.15

Table S2. Recoveries of Cys from serum sample without and with other 19 amino acids.

Table S3. Recoveries of Cu²⁺ from three different mineral water samples.

Mator complex	 Cu ²⁺ (nM)				
water samples	Added		Recovery (%)		
	25.0	25.9	26.4	25.3	103.43 ± 2.06
Purified water ^a	75.0	74.0	73.9	74.3	98.78 ± 0.28
	150.0	147.2	144.6	152.9	98.80 ± 2.84
	25.0	25.2	25.0	25.3	100.76 ± 0.59
Spring water ^b	75.0	75.9	77.2	78.2	102.78 ± 1.54
	150.0	158.4	156.8	157.0	104.93 ± 0.57
	25.0	26.4	24.2	25.5	101.41 ± 4.26
Tap water	75.0	72.8	75.4	75.1	99.24 ± 1.94
	150.0	149.3	155.8	149.8	101.07 ± 2.40

^a Obtained from commercial 'Wahaha' purified drinking water.

^b Obtained from commercial 'Nongfu' spring drinking water.

References

- Gao, J.; Tao, Y.; Wang, N.; He, J.; Zhang, J.; Zhao, W. BODIPY-Based Turn-on Fluorescent Probes for Cysteine and Homocysteine. *Spectrochim. Acta, Part A* 2018, *203*, 77-84.
- (2) Xue, S.; Ding, S.; Zhai, Q.; Zhang, H.; Feng, G. A Readily Available Colorimetric and Near-Infrared Fluorescent Turn-on Probe for Rapid and Selective Detection of Cysteine in Living Cells. *Biosens. Bioelectron.* 2015, 68, 316-321.
- (3) Huang, S.; Yang, E.; Yao, J.; Liu, Y.; Xiao, Q. Red Emission Nitrogen, Boron, Sulfur Co-Doped Carbon Dots for "On-Off-On" Fluorescent Mode Detection of Ag⁺ Ions and L-Cysteine in Complex Biological Fluids and Living Cells. *Anal. Chim. Acta* 2018, *1035*, 192-202.
- (4) Fang, H.; Wang, N.; Xie, L.; Huang, P.; Deng, K.-Y.; Wu, F.-Y. An Excited-State Intramolecular Proton Transfer (ESIPT)-Based Aggregation-Induced Emission Active Probe and Its Cu(II) Complex for Fluorescence Detection of Cysteine. *Sens. Actuators, B* 2019, 294, 69-77.
- (5) Qian, Q.; Deng, J.; Wang, D.; Yang, L.; Yu, P.; Mao, L. Aspartic Acid-Promoted Highly Selective and Sensitive Colorimetric Sensing of Cysteine in Rat Brain. *Anal. Chem.* 2012, *84*, 9579-9584.
- (6) Xiong, Y.; Chen, S.; Ye, F.; Su, L.; Zhang, C.; Shen, S.; Zhao, S. Synthesis of a Mixed Valence State Ce-Mof as an Oxidase Mimetic for the Colorimetric Detection of Biothiols. *Chem. Commun.* 2015, *51*, 4635-4638.
- (7) Song, L.; Zhu, Y.; Yang, Z.; Wang, C.; Lu, X. Oxidase-Mimicking Activity of Perovskite Lamno_{3+δ} Nanofibers and Their Application for Colorimetric Sensing. *J. Mater. Chem. B* 2018, 6, 5931-5939.
- (8) Du, J.; Wang, J.; Huang, W.; Deng, Y.; He, Y. Visible Light-Activatable Oxidase Mimic of 9-Mesityl-10-Methylacridinium Ion for Colorimetric Detection of Biothiols and Logic Operations. *Anal. Chem.* 2018, *90*, 9959-9965.
- (9) Gao, M.; Lu, X.; Chi, M.; Chen, S.; Wang, C. Fabrication of Oxidase-Like Hollow MnCo₂O₄ Nanofibers and Their Sensitive Colorimetric Detection of Sulfite and L-Cysteine. *Inorg Chem Front* 2017, *4*, 1862-1869.
- (10) Jin, T.; Li, Y.; Jing, W.; Li, Y.; Fan, L.; Li, X. Cobalt-Based Metal Organic Frameworks: A

Highly Active Oxidase-Mimicking Nanozyme for Fluorescence "Turn-On" Assays of Biothiol. *Chem. Commun.* **2020**, *56*, 659-662.

- (11) Wang, Y.; Wu, H.; Wu, W. N.; Mao, X. J.; Zhao, X. L.; Xu, Z. Q.; Xu, Z. H.; Fan, Y. C. Novel Rhodamine-Based Colorimetric and Fluorescent Sensor for the Dual-Channel Detection of Cu²⁺ and Co²⁺/Trivalent Metal Ions and Its Aire Activities. *Spectrochim. Acta, Part A* 2019, 212, 1-9.
- (12) Zong, J.; Yang, X.; Trinchi, A.; Hardin, S.; Cole, I.; Zhu, Y.; Li, C.; Muster, T.; Wei, G. Carbon Dots as Fluorescent Probes for "Off-On" Detection of Cu²⁺ and L-Cysteine in Aqueous Solution. *Biosens. Bioelectron.* **2014**, *51*, 330-335.
- (13) Tian, J.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Ultrathin Graphitic Carbon Nitride Nanosheet: A Highly Efficient Fluorosensor for Rapid, Ultrasensitive Detection of Cu²⁺. *Anal. Chem.* **2013**, *85*, 5595-5599.
- (14) Lan, G. Y.; Huang, C. C.; Chang, H. T. Silver Nanoclusters as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions. *Chem. Commun.* 2010, 46, 1257-1259.
- (15) Lee, E. Z.; Jun, Y. S.; Hong, W. H.; Thomas, A.; Jin, M. M. Cubic Mesoporous Graphitic Carbon (IV) Nitride: An All-in-One Chemosensor for Selective Optical Sensing of Metal Ions. *Angew. Chem. Int. Ed.* **2010**, *49*, 9706-9710.
- (16) Sun, K.; Liu, Q.; Zhu, R.; Liu, Q.; Si, Y.; Li, S.; Huang, Q. Oxidase-Like Catalytic Performance of Nano-MnO₂ and Its Potential Application for Metal Ions Detection in Water. *Int J Anal Chem* **2019**, *2019*, *5416963*, 1-10.