Supporting Information

Biodegradable MnFe-hydroxide Nanocapsules to enable Multi-

therapeutics Delivery and Hypoxia-Modulated Tumor Treatment

Linhua Liao,[†] ^a Dong Cen,[†] ^b Yike Fu, ^a Bin Liu, ^a Chao Fang , ^a Yifan Wang, ^b Xiujun Cai , ^b Xiang Li,*^a Hao Bin Wu,*^a and Gaorong Han ^a

^{*a.*} State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China

^{b.} Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou 310016, P. R. China

† Authors with equal contribution

*Corresponding authors: xiang.li@zju.edu.cn (XL), hbwu@zju.edu.cn (HBW).

Figure S1. SEM image of solid SiO_2 nanoparticles as hard template.

Figure S2. TEM images of the nanoparticles synthesized when only using (a) Mn²⁺ or (b) Fe³⁺ precursor.

Figure S3. TEM images of SiO₂@MnFe(OH)_x nanoparticles after incubating in NH₃·H₂O solution with various concentrations: (a)~(c) 0.25 M, (d)~(f) 0.5 M, (g)~(i) 1.5 M at 120 °C for 24h.

Figure S4. XRD pattern of H-MnFe(OH)_x nanocapsules.

Figure S5. (a) FTIR spectrum and (b) TGA-DSC curve of H-MnFe(OH)_x nanocapsules.

Figure S6. HRTEM image of H-MnFe(OH)_x nanocapsules.

Figure S7. Digital photographs and corresponding size distribution of $H-MnFe(OH)_x$ in water, PBS, normal saline (NS) and cell culture medium (DMEM) at 0 and 24 h.

Figure S8. LC and EE of (b) DOX and (c) ICG into H-MnFe(OH)x with various mass ratios *via* individual loading.

Figure S9. (a) UV–vis–NIR spectra and (b) the standard curve of DOX at different concentrations. (c) UV–vis–NIR spectra and (d) the standard curve of ICG solutions at different concentrations.

Figure S10. Elemental mapping for DOX&ICG/ H-MnFe(OH)_x. Scale bar (20 nm).

Figure S11. DOX release from DOX&ICG/ H-MnFe(OH)_x in PBS at pH = 7.4, and pH = 6.5 with 808 nm irradiation (0.69 W cm⁻²).

Figure S12. Temperature photographs of DOX&ICG/ H-MnFe(OH)_x at various concentrations under NIR irradiation for 0-5 min (808 nm, 0.69 Wcm⁻²).

Figure S13. UV–vis–NIR absorption spectra of DPBF upon 808 nm laser irradiation (0.69 W cm⁻²).

Figure S14. The viability of 4T1 cells incubated with various concentrations of Fe^{3+} or Mn^{2+} .

Figure S15. Fluorescence images of 4T1 cells stained with calcein-AM (green, live cells) and propidium iodide (red, dead cells) after treated with ICG/SiO₂ and ICG/LDH samples upon NIR irradiation in N₂ or O₂ atmospheres. Scale bar = 50 μ m.

Figure S16. Digital photographs of the mice on day 1, 8 and 15 after various treatments.