Supporting Information

Ruthenium oxide nanoparticles immobilized over citrus limetta waste derived carbon material for electrochemical detection of hexestrol

Karan Chaudhary, Navin Kumar Mogha, Shubra Lalwani, Raj Kishore Sharma* and Dhanraj T. Masram*

Department of Chemistry, University of Delhi, Delhi, 110 007, India

Instruments

CHNS analyzer (Elementar Analysensysteme Germany, Model- Vario Micro Cube), Fouriertransform infrared (FT-IR) spectroscopy (Thermo fisher FTIR spectrometer Model-NICOLET iS50Field), Field Emission Scanning Electron Microscope (ZEISS Gemini SEM-500) equipped with EDX, Transmission Electron Microscopy (TECNAI 200 kV) and N₂ adsorption/desorption analyzer (Quantachrome Autosorb, Model- ASI-CI-11) were used to characterize composition, morphology, and microstructure of the nanomaterials. X-ray diffraction (Model No. D8 DISCOVER), X-ray photoelectron spectroscopy (Model- PHI 5000 VersaProbe III) and Raman (Renishaw InVia Reflex Micro-Raman spectrometer) was used to study crystallographic information and chemical composition of the synthesized nanomaterials. Electrochemical sensing tests were carried out using CHI-760D electrochemical workstation with a threeelectrode cell in which RuO₂@PBC@ITO as working electrode, Pt sheet as an auxiliary and a saturated calomel electrode (SCE) was used as a reference electrode. All the measurements were carried out at room temperature.

Table of contents

Figures	Page No.
Fig. S1 EDX analysis indicating the elemental composition of RuO ₂ @PCB.	S3
Fig. S2 FT-IR spectrum of PCB and RuO ₂ @PCB.	S4
Fig. S3 Graph for percentage peak current (anodic) of RuO ₂ @PCB/ITO from CV	S4
with time.	

Tables	Page No.
Table S1. CHNS elemental analysis of PCB	

Element	weight %	Atomic %	Net Int.	Error %	Kratio	2	A	F	
СК	31.91	72.76	180.50	6.60	0.2482	1.3737	0.5663	1.0000	
NK	2.29	4.48	5.30	21.27	0.0064	1.3379	0.2080	1.0000	
OK	7.02	12.02	32.00	11.28	0.0275	1.3067	0.2993	1.0000	
AuM	39.34	5.47	110.20	4.74	0.3104	0.6982	1.1273	1.0021	
SK	0.00	0.00	0.00	99.99	0.0000	1.1521	0.8657	0.9981	
RuL	19.44	5.27	56.30	4.75	0.1536	0.8412	0.9390	1.0002	

Fig. S1 EDX analysis indicating the elemental composition of RuO₂@PCB.

Sample	N (%)	C (%)	H (%)	S (%)	C/N Ratio	C/H Ratio
PCB	3.45	50.36	3.956	0.042	14.6081	12.7316

Fig. S2 FT-IR spectrum of PCB and RuO₂@PCB.

Fig. S3 Graph for percentage peak current (anodic) of RuO₂@PCB/ITO from CV with time.