Supporting information

A Bio-inspired Injectable Hydrogel as a Cell Platform for Real-Time Glycaemic Regulation

Yu Zhang ^a, Jun Yang ^a, Jun Zhang ^a, Shuangwen Li ^a, Lisi Zheng ^a, Yanlong Zhang ^b, Huipeng Meng ^b, Xinge Zhang ^c, Zhongming Wu ^{a*}

^a NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

^b State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments & Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China

^c Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

*Corresponding author

E-mail: wuzhongming@tmu.edu.cn

Figure S1. The gelatin solution turned to a hydrogel as the temperature rose.

Figure S2A displayed the curves of storage modulus (*G*') and loss modulus (*G*'') of the prepared P(AAPBA-Dex-NIPAM) related to temperature ranges. The gelling temperature was determined by the cross-point of the *G*' and *G*''. As shown in the Figure S2B-S2D, the gelling temperature of these three formations of hydrogels was 14°C, 18°C and 28°C for P(AAPBA₆-Dex-NIPAM₆₄), P(AAPBA₄-Dex-NIPAM₆₆), P(AAPBA₂-Dex-NIPAM₆₈), respectively.

Figure S2. Dynamic rheological properties of (A) P(AAPBA-Dex-NIPAM) hydrogels over temperature. Gelling temperature of (B) P(AAPBA₂-Dex-NIPAM₆₈), (C) P(AAPBA₄-Dex-NIPAM₆₆) and (D) P(AAPBA₆-Dex-NIPAM₆₄) hydrogels, respectively.

Figure S3. Cell viability after incubation with different concentrations of $P(AAPBA_2-Dex-NIPAM_{68})$, $P(AAPBA_4-Dex-NIPAM_{66})$ and $P(AAPBA_6-Dex-NIPAM_{64})$ hydrogels determined by MTT assay for 24 h.

Figure S4. Quantification of cell viability (by live/dead staining) after 3- and 7-day of incubation with 1 mL of P(AAPBA₂-Dex-NIPAM₆₈), P(AAPBA₄-Dex-NIPAM₆₆) and P(AAPBA₆-Dex-NIPAM₆₄) hydrogels, respectively.

Figure S5. SEM images of insulinoma cells encapsulated by $P(AAPBA_2-Dex-NIPAM_{68})$ hydrogel on day 3 after cultivation.

Figure S6. The representative immunofluorescence images of the retrieved hydrogel sample stained with anti-insulin (insulin, green), DAPI (nuclei, blue), anti-CD68 or anti-TNF- α marked red. Scale bar: 100 µm.

Samples	AAPBA (mg/mL)	NIPAM (mg/mL)	Dex-Ma (mg/mL)	APS (mmol/L)	TMEDA (mmol/L)	Gelation time (s)
P(AAPBA ₂ - Dex-NIPAM ₆₈)	2	68	1	20	20	60
P(AAPBA ₄ - Dex-NIPAM ₆₆)	4	66	1	20	20	70
P(AAPBA ₆ - Dex-NIPAM ₆₄)	6	64	1	20	20	65

Table S1. Gelation time of hydrogel with different compositions and concentrations.

Table S2. Drug release kinetic data for the hydrogels obtained from fitting drug release data to the Ritger-Peppas equation.

Samples	$M_t / M_\infty = \mathrm{kt}^\mathrm{n}$			Transport mechanism	
Samples	n	k	R^2	Transport meenament	
P(AAPBA ₂ -Dex-NIPAM ₆₈)	0.6817	7.3777	0.9170	Non-Fickian diffusion	
P(AAPBA ₄ -Dex-NIPAM ₆₆)	0.6650	8.4085	0.9135	Non-Fickian diffusion	
P(AAPBA ₆ -Dex-NIPAM ₆₄)	0.6681	9.3336	0.9100	Non-Fickian diffusion	