Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supporting information

A tumor-sensitive biological metal-organic complex for drug delivery and cancer therapy

Zelei Jiang,^a Tong Wang,^a Shuai Yuan,^a Mengfan Wang,^{*,a,b} Wei Qi, ^{a,b,c} Rongxin Su, ^{a,b,c} Zhimin He ^a

^{a.} School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.

^{b.} The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China.

^{c.} Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China.

Corresponding author E-mail: mwang@tju.edu.cn (M.W.).

	· · · · ·	-	
Temperature (°C)	SEM/TEM ^a	Morphology	Average Size (nm)
40	K.D.S.	nanorod	L=380 ± 7.8 W=60~100 ^b
60	-	amorphous cluster	1400 ± 15.5 °
80	N.D.	N.D.	N.D.
120	N.D.	N.D.	N.D.
150	N.D.	N.D.	N.D.

Table S1. bioMOC-Fe(Cys) synthesized at different temperatures

^{*a*} Scale bars = 200 nm. ^{*b*} Statistical analysis of TEM/SEM images, L: length, W: width. ^{*c*} Measured using DLS.

Temperature (°C)	SEM/TEM ^a	Morphology	Average Size
			(nm)
40	* ** ** * _	amorphous cluster	695 ± 9.8 ^b
60	-	amorphous cluster	689 ± 8.7 ^b
80		amorphous cluster	567 ± 4.5 ^b
120		amorphous cluster	301 ± 3.9 ^b
150	N.D.	N.D.	N.D.

Table S2. bioMOC-Zr(Cys) synthesized at different temperatures

^{*a*} Scale bars = 200 nm. ^{*b*} Measured using DLS.

Schäftige TODOS				
NDDSs	Cumulative release (%)		Release time	
	No GSH (pH 7.4)	10 mM GSH (pH 7.4)	(h)	Reference
TTMOF	16.5	78.5	140	Wang et al. ^[1]
ZDOS NPs	17.5	38.5	48	Ren et al. ^[2]
Mn-SS/DOX@PDA-PEG	18.5	45.5	24	Zhao <i>et al.</i> ^[3]
MSN-ss-GHA	11.77	51.1	60	Chen <i>et al.</i> ^[4]
MOF-Zr(DTBA)	50	87.4	22	Lei <i>et al.</i> ^[5]
bioMOC-Zn(Cys)	8.25	83.3	48	This study

Table S3. Comparison of the cumulative amount of drug released from some GSH-sensitive NDDSs

Table S4. Comparise	on of the cytot	toxicity of MOF-	-based drug carriers
---------------------	-----------------	------------------	----------------------

Carriers	Cells	Concentration (µg/mL)	Incubation time (h)	Cell viability (%)	Reference
ZJU-101	PC12	200	24	80.0	Yang et al. ^[6]
PCN-221	PC12	100	24	90.0	Lin <i>et al</i> . ^[7]
Fe-MIL-53-NH ₂ -FA-5-FAM	HASMC	200	24	84.5	Gao et al. ^[8]
	MGC-803	200	24	78.5	
ZIF-8	HeLa	100	48	83.5	D 12
	MCF-7	100	48	82.5	Ren <i>et al.</i> ²
MOF-Zr(DTBA)	HeLa	200	24	70.5	
	MDA-MB-231	200	24	80.5	Lei <i>et al.</i> ⁵
bioMOC-Zn(Cys)	A549	200	24	97.7	
	BEAS-2B	200	24	93.9	This study

Figure S1. The DLS analysis of bioMOC-Zn(Cys) synthesized at different temperatures.

Figure S2. FTIR spectra of *L*-cystine and the bioMOC-Zn(Cys) nanocarrier synthesized at

150 °C.

Figure S3. Elemental mapping images of a bioMOC-Zn(Cys) nanoparticle.

 $\label{eq:Figure S4.Photographs of lyophilized bioMOC-Zn(Cys) and DOX@bioMOC-Zn(Cys)$

powders.

Figure S5. Hydrodynamic diameters of DOX@bioMOC-Zn(Cys) incubated in 20% FBS (A). Drug leakage from DOX@bioMOC-Zn(Cys) during 30 days of storage in deionized water at

4 °C (B).

Figure S6. (A) SEM image of a bioMOC-Zn(Lys) particle. Scale bar =200 nm. (B) PXRD

Figure S7. Drug release from DOX@bioMOC-Zn(Cys) in PBS at different pH values (A). Drug release from DOX@bioMOC-Zn(Cys) in PBS (pH 7.4 or pH 5.5) with and without GSH (B).

analysis of bioMOC-Zn(Lys).

Figure S8. CLSM images of A549 cells after a 4 h incubation with DOX@bioMOC-Zn(Cys). (A) Red fluorescence of DOX, (B) cell nuclei stained with DAPI, (C) late endosomes and lysosomes stained with LysoTracker Green and (D) merged image (scale bars: 10 μm)

Confocal laser scanning microscopy (CLSM) analyses were used to investigate the endocytosis of DOX@bioMOC-Zn(Cys) in human lung cancer cells (A549 cells). The intrinsic red fluorescence of DOX was used to monitor the intracellular distribution of DOX@bioMOC-Zn(Cys). The blue fluorescence indicated the cell nuclei stained with DAPI. Late endosomes and lysosomes were stained with LysoTracker Green. As shown in **Figure S8**, the red fluorescence overlapped with both the green (endosomes and lysosomes) and blue areas (nuclei) in cells that had been exposed to DOX@bioMOC-Zn(Cys) for 4 h. Thus, DOX@bioMOC-Zn(Cys) was taken up by A549 cells via endocytosis, and the drug that accumulated in endosome/lysosomal compartments was further delivered to the cell nucleus.

Figure S9. Flow cytometry analysis of A549 cells (A) and BEAS-2B cells (B) after a 0.5-h treatment with free DOX (cyan), DOX@bioMOC-Zn(Cys) (orange) or the blank (black).

REFERENCES

1 X. Wang, Z. Dong, H. Cheng, S. Wan, W. Chen, M. Zou, J. Huo, H. Deng and X. Zhang, *Nanoscale*, 2015, 7, 16061.

2 S. Z. Ren, D. Zhu, X. H. Zhu, B. Wang, Y. S. Yang, W. X. Sun, X. M. Wang, P. C. Lv, Z. C. Wang and H. L. Zhu, ACS Appl. Mater. Interfaces, 2019, 11, 20678-20688.

3 J. Zhao, Y. Yang, X. Han, C. Liang, J. Liu, X. Song, Z. Ge and Z. Liu, ACS Appl. Mater. Interfaces, 2017, 9, 23555.

4 L. Chen, X. Zhou, W. Nie, Q. Zhang, W. Wang, Y. Zhang and C. He, ACS Appl. Mater. Interfaces, 2016, 8, 33829.

5 B. Lei, M. Wang, Z. Jiang, W. Qi, R. Su and Z. He, ACS Appl. Mater. Interfaces, 2018, 10, 16698.

6 Y. Yang, Q. Hu, Q. Zhang, K. Jiang, W. Lin, Y. Yang, Y. Cui and G. Qian, Mol. Pharm., 2016, 13, 2782-2786.

7 W. Lin, Q. Hu, K. Jiang, Y. Yang, Y. Yang, Y. Cui and G. Qian, J Solid State Chem, 2016, 237, 307.

8 X. Gao, M. Zhai, W. Guan, J. Liu, Z. Liu and A. Damirin, Acs Appl Mater Interfaces, 2017, 9, 3455.