Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Tuning Hydrogel Properties with Sequence-Defined, Non-Natural Peptoid Crosslinkers Logan D. Morton,¹ Alexander Hillsley,¹ Mariah J. Austin,¹ Adrianne M. Rosales^{1,*}

¹ McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX USA

* Email address: <u>arosales@che.utexas.edu</u>; Tel: +1 512-471-6300

Figure S1: A) MALDI and B) analytical HPLC of sequence **1** confirming >95% purity.

Figure S2: A) MALDI and B) analytical HPLC of sequence **2** confirming >95% purity.

Figure S3: A) MALDI and B) analytical HPLC of sequence 3 confirming >95% purity.

Figure S4: MALDI confirmation of the cell adhesive peptide (GCGYGRGDSPG).

Figure S5: MALDI confirmation of the peptide crosslinker control (KCGGIQQWGPCK).

Figure S6: NMR of PEG-norbornene confirming a functionalization of 90%.

Figure S7: Tests with Ellman's reagent were performed to compare the relative amount of thiol between sequences and confirm viability as a crosslinking agent in hydrogel formation. Dithiothreitol (DTT) was used as a control with two thiols to compare to the peptoid crosslinkers.

Figure S8: Representative in situ rheology for 5 wt% hydrogels crosslinked with each peptoid sequence showed the large difference between storage and loss moduli for all sequences.

Calculation of pc

The degree of conversion at the gel point may be calculated via Flory-Stockmayer theory for a 0.75:1 thiol:ene hydrogel,^{1–3} as shown below:

$$f_{a} = \frac{\sum f_{ai}^{2} N_{ai}}{\sum f_{ai} N_{ai}} = 2$$

$$f_{b} = \frac{\sum f_{bj}^{2} N_{bj}}{\sum f_{bj} N_{bj}} = 3.6 \text{ (with 90\% functionalization)}$$

$$r = \frac{N_{a}}{N_{b}} = 0.4167$$

$$\rho_{c} = \frac{1}{\sqrt{r * (f_{a} - 1) * (f_{b} - 1)}} = 0.9608$$

Where N_{ai} is the number of moles of a_i containing f_{ai} functional groups for each a-type molecule (in this case our a type is the thiol-containing molecules). Similarly, N_{bj} is the number of moles of b_j containing f_{bj} functional groups for each b-type molecule (in this case it is our norbornene containing groups). Therefore, f_a and f_b are the weighted average functionalities of reactive molecules a and b. r is the ratio of reactive sites in the system, representing the stoichiometric proportions of reactive sites.

Figure S9: Swelling ratios of peptide and peptoid-crosslinked hydrogels (10 wt% concentration) showed no significant difference.

Figure S10: The average cell area on glass was larger than that of the cells on the hydrogels. Glass is much stiffer than either the peptide or peptoid-crosslinked hydrogels investigated.

Figure S11: Calculated seeding densities on peptide or peptoid-crosslinked hydrogels compared to the seeding density calculated on glass.

References

- 1 W. H. Stockmayer, J. Chem. Phys., 1943, **11**, 45–55.
- 2 P. J. Flory, J. Am. Chem. Soc., 1941, **63**, 3083–3090.
- 3 A. P. Pizzi, , DOI:10.1201/9780203912225.ch8.