Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Reduced Graphene Oxide-GelMA-PCL Hybrid Nanofibers for Peripheral Nerve

Regeneration

Xingxing Fang^{a,b,c,d,*}, Haichang Guo^{d,*}, Wei Zhang^{a,c}, Haoming Fang^d, Qicheng Li^{a,c},

Shulin Bai^{d,}†, Baoguo Jiang^{a,c,}†, Peixun Zhang^{a,c}†

a. Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China.

b. Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.

c. National Center for Trauma Medicine, Beijing, 100044, China.

d. Department of Materials Science and Engineering, CAPT/HEDPS, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Engineering, Peking University, Beijing, 100871, China.

†Corresponding authors: Baoguo Jiang: jiangbaoguo@vip.sina.com.Shulin Bai: slbai@pku.edu.cn Peixun Zhang: zhangpeixun@bjmu.edu.cn.

**These authors contributed equally to this work.*

Figure S1. SEM images and EDX of GO (A and B) and rGO (C and D). Scale bar = 7 μ m.

Figure S2. (A) Morphological photographs of rGO/GelMA/PCL hybrid solution with different rGO concentration (Control: 0 wt% rGO, 0.25rGO: 0.25 wt% rGO, 0.5rGO: 0.5 wt% rGO). (B) Image of rGO/GelMA/PCL hybrid nanofibers (0.5 wt% rGO) nerve guidance conduits. Scale bar = 5mm.

Figure S3. Morphological photographs of rGO/GelMA/PCL hybrid nanofibers (1.0 wt%

rGO), Scale bar = 70 μ m. (B) is a magnified (A) image. Scale bar = 20 μ m.

Figure S4. Mechanical properties of rGO/GelMA/PCL hybrid nanofibers with different rGO concentration (Control: 0 wt% rGO, 0.25rGO: 0.25 wt% rGO, 0.5rGO: 0.5 wt% rGO, 0.75rGO: 0.75 wt% rGO, 1.0rGO: 1.0 wt% rGO). Stress-strain curves (A, *P<0.05, Error bar = s.e.m. n=6), elastic modulus (B, *P<0.05, Error bar = s.e.m. n=6), fracture strain (C, *P<0.05, Error bar = s.e.m. n=6), and ultimate tensile stress (D, *P<0.05 between Control group and 0.25rGO, $^{\#}P$ <0.05 between Control group and 0.5rGO group, Error bar = s.e.m. n=6).

Figure S5. Fluorescence microscopy images of RSC96 stained with LIVE/DEADs,

seeded on rGO/GelMA/PCL hybrid nanofibers with different rGO concentration (Control: 0 wt% rGO, 0.25rGO: 0.25 wt% rGO, 0.5rGO: 0.5 wt% rGO, 0.75rGO: 0.75 wt% rGO, 1.0rGO: 1.0 wt% rGO) at 3 days respectively.

Figure S6. Intraoperative images of rGO/GelMA/PCL hybrid nanofibers (Control and 0.5rGO groups) nerve guidance conduit bridging a 10mm sciatic nerve defect in the rat after 0 weeks (A1, B1) and 12 weeks (A2, B2). Intraoperative images of autologous nerve bridging a 10mm sciatic nerve defect in the rat after 0 weeks (C1) and 12 weeks (C2).

Figure S7. Footprints and footfall patterns of Control group, 0.5rGO group, Autograft

group, and Normal group after 12 weeks of implantation, respectively. $^{\#}P$ between 0.5rGO group and Normal group, $^{\#}P < 0.05$. Error bar = s.e.m. n=8.

Figure S8. Morphological photographs of muscles and wet muscles ratio. Morphological images of Control group(A), 0.5rGO group (B) and Autograft group (C), experimental side's tibialis anterior muscles (T+), contralateral side's tibialis anterior muscles (T), experimental side's gastrocnemius muscles (G+), contralateral side's gastrocnemius muscles ratio and gastrocnemius muscle ratio. Error bar = s.e.m. n=8.

Table	1.	The	primers	used	tor	KI-P	CR	were s	hown	below.
I able	1.	Ine	primers	used	for	KI-P	CR	were s	hown	below.

Gene	Primer sequence (F, forward; R, reverse; 5' to 3')			
Foxc1	F: AAGCCTCCCTACAGCTACATCGCTCTTAT			
	R: GCCCTTCTCCTCCTTGTCCTTCACC			
Foxc2	F: CTTCTGTAAACGAGTGCGGATTTGTAACCAGG			

R: CAATTTGGCAGTAACAGTTGGGCAAGATGAAA

Snai2 F: CCAAGAAGCCCAACTACAGCGAACT

R: CGTCACTAATGGGACTTTCTGAACCAC

Sox2 F: CGCACATGAACGGCTGGAGCA

R: GCCCTGGAGTGGGAGGAAGAGGTAA

Sox10 F: TCGGGCAACGGGAGGAAGAACATAGA

R: GTGACGCTGATGGACTGGGAGGGAG

Twist1 F: ATTCCCAGAGGCAACGGCATCACC

R: TGCATTTAGACACCGGATCTATTTGCATTTT

- GAPDH F: CGGCAAGTTCAACGGCACAGTCA
 - R: CACGCCACAGCTTTCCAGAGGG