Supplementary Information

A Facile and Novel Design of Multifunctional Electronic Skin Based on Polydimethylsiloxane with Micropillars for Signal Monitoring

Songyue Zhang^a, Chuanchuan Lin^a, Zengzilu Xia^{a,*}, Maowen Chen^a, Yile Jiaa, Bailong Tao^a, Shunbo Li^b, Kaiyong Cai^{a,*}

^a Key Laboratory of Biorheological Science and Technology, Ministry of Education,
 ^b College of Bioengineering, Chongqing University, Chongqing, 400044, China.
 ^b Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and
 Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology,
 School of Optoelectronics Engineering, Chongqing University, Chongqing 400044,
 China.

*Corresponding author : Dr. Zengzilu Xia and Dr. Kaiyong Cai

E-mail: zzlxia@cqu.edu.cn, kaiyong_cai@cqu.edu.cn

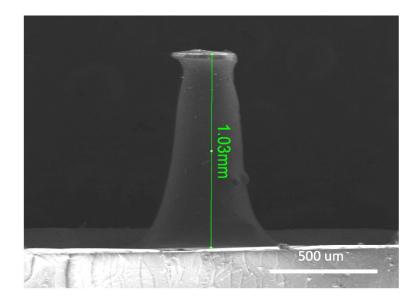


Fig. S1 The cross-sectional SEM image of a micropillar.

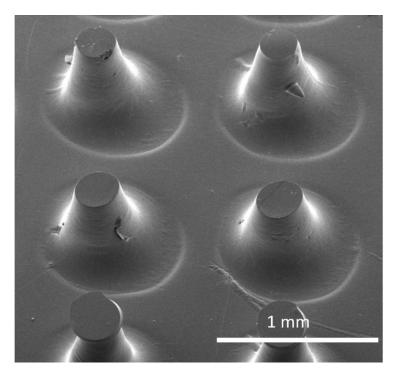


Fig. S2 The 5-angle top-view SEM image of the micropillars.

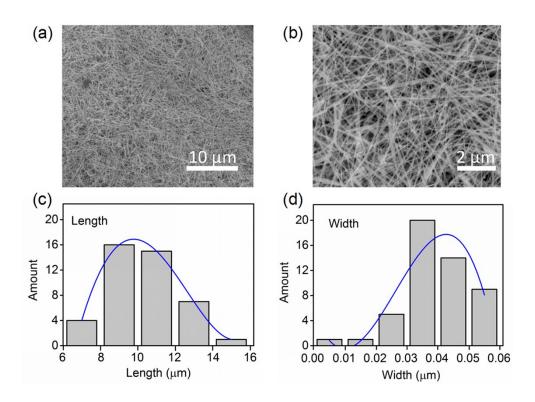


Fig. S3 SEM images of AgNWs with larger scales as (a) scale bar 10 μ m and (b) scale bar 2 μ m. The nonlinear fitting distribution curves of (c) length and (d) width values of AgNWs.

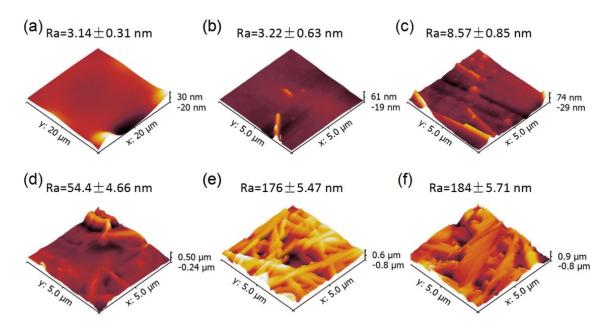


Fig. S4 AFM images of (a) plain PDMS and PDMS coated with (b) 1 layer, (c) 2 layers,

(d) 3 layers, (e) 4 layers, and (f) 5 layers of AgNWs.

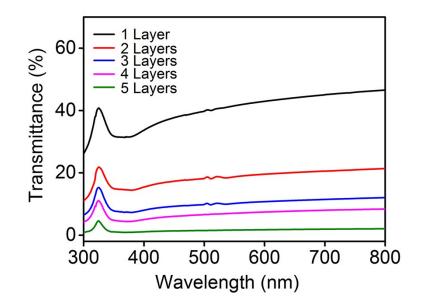


Fig. S5 The optical transmittances of substrates with various layers of AgNWs.

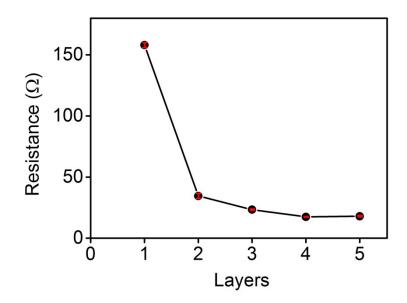


Fig. S6 The resistances of substrates with various layers of AgNWs.

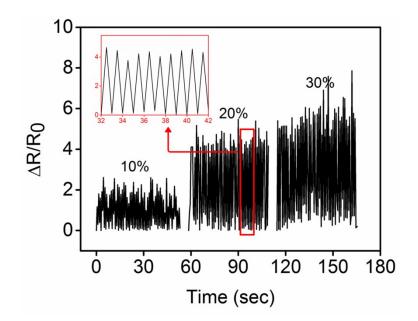


Fig. S7 The normalized electrical resistance changes ($\Delta R/R_o$) of the e-skin under cyclic mechanical stretching and releasing at the rate of 1 Hz with strain as 10%, 20%, and 30%, respectively.

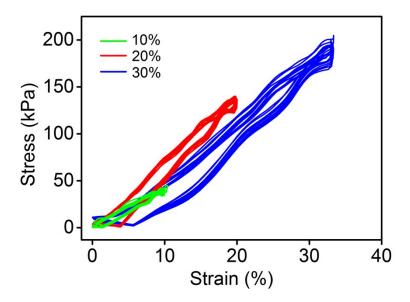


Fig. S8 The stress-strain curves of e-skin with different mechanical strains.

Elements	Parameter	Response range	Sensitivity	R ²
Bottom radii	100 µm	0-100%	0.136	0.997
	150 μm	0-100%	0.09	0.978
	200 µm	0-100%	0.066	0.932
	250 μm	0-100%	0.043	0.955
	300 µm	0-130%	0.0159	0.99
Spacing	600 µm	0-90%	0.084	0.961
	800 μm	0-100%	0.085	0.991
	1000 μm	0-100%	0.136	0.997
	1200 μm	0-100%	0.113	0.998
	1400 µm	0-100%	0.092	0.993
Geometric	hexagon	0-100%	0.147	0.999
arrays	square	0-100%	0.136	0.997
	central square	0-100%	0.105	0.995
	triangle	0-100%	0.088	0.97

Table S1 The response ranges and sensitivity values of e-skins.