Supplementary information for

Controlling the degradation of cellulose scaffolds with Malaprade oxidation for tissue engineering

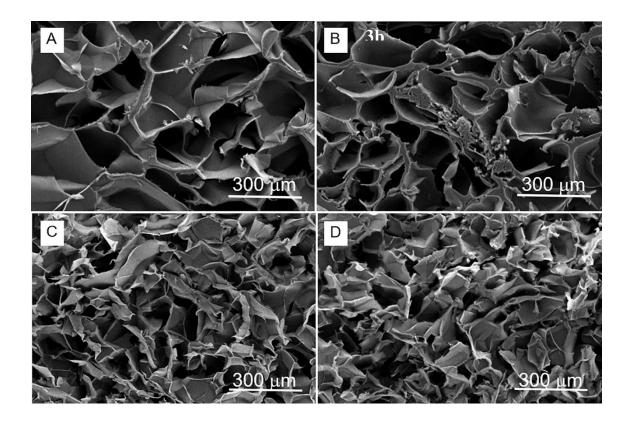
 $Wichchulada\ Chimpibul^{a,b}$, Tadashi Nakaji-Hirabayashi^c, Xida Yuan^b, Kazuaki Matsumura*b

^aProgram in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok,

Thailand

^bSchool of Materials Science, Japan Advanced Institute of Science and Technology,

Ishikawa, Japan


^cFaculty of Engineering Department of Environmental Applied Chemistry, University of

Toyama, Toyama, Japan

*Corresponding Author: Kazuaki Matsumura, School of Materials Science, Japan

Advanced Institute of Science and Technology, Ishikawa, Japan; e-mail:

mkazuaki@jaist.ac.jp

Figure S1. SEM photographs of the cellulose scaffold structure after leaching. The scaffolds contained different percentages of NaCl particles with a size of 250 μ m: (A) 60%, (B) 50%, (C) 40%, and (D) 30%.

Table S1 Pore size of cellulose scaffolds prepared using 50 wt% of NaCl crystals as porogens.

NaCl particle	Pore size before oxidation /	Pore size after oxidation by NaIO ₄
size/μm	μm	(1.0%)/μm
52	54±4.8	58±9.9
75	84±5.5	79±10.6
100	124±11.3	131±20.8
150	210±23.5	199±12.6
250	248±21.0	266±31.5

Table S2 Pore size of cellulose scaffolds prepared using 30, 40, 50, 60 wt% of NaCl crystals with a size of 250 μ m as porogens.

NaCl particle (250 μm size) concentration/wt%	Pore size before oxidation / µm	
30	122±25.6	
40	188±17.3	
50	248±21.0	
60	283±32.6	

 Table S3 Porosity of cellulose scaffolds

		NaCl particle (250 μm size) concentration / wt%			
		30	40	50	60
Porosity	Before oxidation	54.2±3.3	59.2±1.6	68.4±2.3	70.2±1.9
/ %	After oxidation by	55.4±4.5	60.2±2.9	69.9±3.7	73.5±6.3
	NaIO ₄ (1.0%)				

 Table S4. Aldehyde introduction to cellulose scaffolds.

% NaIO ₄ introduced to	mmol aldehyde/weight	% aldehyde introduction	
cellulose scaffold	(mmol/g)	/glucose unit	
0.1	0.056	0.91±0.04	
0.2	0.080	1.30±0.02	
0.3	0.117	1.90±0.28	
0.5	0.346	5.61±0.48	
1.0	0.640	10.4±1.75	
2.5	0.913	14.8±2.98	
5.0	1.34	21.7±1.02	
10.0	2.06	33.4±3.88	
15.0	2.33	37.7±3.56	
20.0	2.67	43.3±5.32	

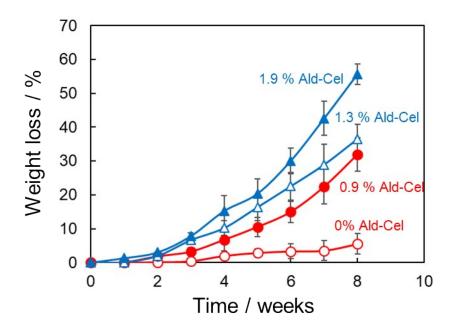
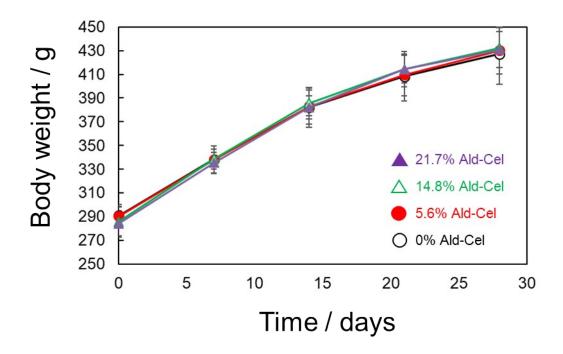



Figure S2. Ald-Cel scaffold degradation in 5% glycine solution over a period of 8 weeks.

Data represent mean \pm standard deviation (N = 3).

Figure S3. Changes in body weight of rats after implantation. The error bars indicate SD (N = 6).