Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B.

Dual-responsive TPGS crosslinked nanocarriers to overcome multidrug resistance

Li Li ${ }^{\text {al }}$, Tao Liu ${ }^{\text {b1 }}$, Jia-Xin Liao ${ }^{\text {a }}$, Zhe-Yi Zhang ${ }^{\text {a }}$, Daibo Song ${ }^{\text {a }}$, Guan-Hai Wang ${ }^{\text {a* }}$ ${ }^{\text {a }}$ School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
${ }^{\text {b }}$ Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
*To whom correspondences should be addressed: wangguanhai@gdmu.edu.cn (Wang), Tel/fax: 0086-0769-22896322
${ }^{1}$ These authors contributed equally to this work.

Fig. S1. ${ }^{1}$ HNMR of Mal-TPGS and cTAT-TPGS $\left(\mathrm{D}_{2} \mathrm{O}\right)$

Fig. S2. ${ }^{1}$ HNMR of PEG- $b-$ Poly(aspartic acid-NCA) (DMSO- d_{6}).

Fig. S3. ${ }^{1} \mathrm{HNMR}$ of PEG-b-Poly(aspartic acid-amine) $\left(\mathrm{D}_{2} \mathrm{O}\right)$

Fig. S4. ${ }^{1} \mathrm{HNMR}$ of PEG-b-Poly(aspartic acid) (DMSO- d_{6}).

Fig. S5. The GPC traces of Folate-PEG- b-Poly(aspartic acid-amine) (1) and Folate-PEG- b Poly(aspartic acid-NCA) (2) in DMF.

Tab. S1 Characteristics of non-crosslinked and crosslinked micelles

	Non-crosslinked micelles		Crosslinked micelles			
	Size	CMC	DPI	Size	Zeta potential	DPI
	(nm)	$(\mathrm{mg} / \mathrm{L})$		(nm)	(mV)	
PPAL	80.3	6.9	0.12	70.2	-4.9	0.12
$4: 1$	65.2	14.8	0.15	53.1	-16.5	0.21
$2: 1$	50.2	14.7	0.30	42.6	-18.8	0.32
cTAT-TPGS	28.6	29.3	0.22		-23.1	

Fig. S6. Zeta-potential change at pH 7.4 and 6.8 of non-crosslinked micelles of PPAL .

Fig. S7. Cell viabilities of MCF-7/ADR cells treated with different blank micelles groups after 24 h.

Fig.S8. Body weight changes of nude mice following different treatments within 19 days. 1. Blank RCMs, 2. Free DOX, 3. DOX-1 (PPAL@DOX), 4. DOX-2 (RCMs@DOX). *P <0.05, ** $\mathrm{P}<0.01$.

Fig. S9. The images of different tissues with blank RCMs and DOX-2 (RCMs @DOX) observed by the H\&E staining.

Fig. S10. Changes of aspartate transferase (AST) (A) and creatinine (CRE) (B) after treatment with 1. Blank CM (Blank RCMs), 2. Free DOX, 3. DOX-1 (PPAL@DOX), 4. DOX-2 (RCMs@DOX), respectively. Blood samples were gathered at injection after 15 days. ${ }^{\text {P }}<0.05$, ** $\mathrm{P}<0.01$.

