Supporting Information

Growth of large-scale MoS_2 nanosheets on double layered $ZnCo_2O_4$ for real-time *in-situ* H₂S monitoring in live cells

Veerappan Mani^{1,2},* Shanthi Selvaraj^{3,4}, Nithiya Jeromiyas¹, Sheng-Tung Huang¹, Hiroya Ikeda⁴, Yasuhiro Hayakawa⁴, Suru Ponnusamy³, Chellamuthu Muthamizhchelvan^{*3}, Khaled Nabil Salama^{2*}

¹Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan (ROC)

²Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia

³Centre for Nanoscience and Nanotechnology, Department of Physics and Nanotechnology, SRM University, India.

⁴Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Japan.

*Corresponding authors: <u>veerappan.mani@kaust.edu.sa</u> (V. Mani), <u>selvancm@gmail.com</u> (C. Muthamizhchelvan), <u>khaled.salama@kaust.edu.sa (</u>K.N. Salama)

Figure S1 (A) H_2S sensing performance of MoS_2 – $ZnCo_2O_4$ – $ZnCo_2O_4$ /CC for 10 continuous days (stability test) and (B) Reproducibility of five MoS_2 – $ZnCo_2O_4$ – $ZnCo_2O_4$ /CC. The experiments were performed toward 1 mM H_2S suspended in 0.1 M PBS (pH 7.4).

Effect of concentration

As the concentration of H_2S increases, the oxidation peak current was also increased (**Figure S2A**). The linear increase in the peak currents upon succession injection of increasing amounts of H_2S was witnessed, suggesting the absence of electrode fouling. Antifouling surface is an important requirement for the electrode to be used in *real-time* sensing, because the electrode must be in contact with the solution for a continuous period. The plot between response current and concentration of H_2S exhibits good linearity (**Figure S2B**). The linear regression equation is, current (μA) = 0.0173 [H_2S] (μM) + 0.0062.

Figure S2 (A) CVs of MoS_2 -ZnCo₂O₄-ZnCo₂O₄/CC toward different concentrations of H_2S (a= 0.1 mM, b = 0.2 mM, c = 0.3 mM, d = 0.4 mM, e = 0.5 mM, f = 0.6 mM, g = 0.8 mM, h = 0.7 mM, i =0.9 mM, and j =1 mM) dispersed in PBS (pH 7.4). (B) Plot of peak current (mA) vs. [H₂S]/ μ M.

Effect of scan rate

Next, the effect of scan rate on the electrocatalysis of H_2S was analyzed by applying different scan rates from 0.01–0.1 Vs⁻¹ (**Figure S3A**). The plot between H_2S reduction peak currents and square root of scan rate displays good linearity, suggesting a diffusion controlled reaction (**Figure S3B**). The linear regression equation is, current (mA) = 7.193 (scan rate)^{1/2} (V.s⁻¹)^{1/2} – 0.763

Figure S3 (A) CVs recorded for different scan rates at MoS_2 - $ZnCo_2O_4$ - $ZnCo_2O_4$ /CC toward 1 mM H₂S suspended in PBS (pH 7.4) and (B) respective plot of peak current (μ A) vs. (scan rate)^{1/2} (V.s⁻¹)^{1/2}.

Effect of pH

The influence of pH was examined by recording the CV responses of MoS_2 -ZnCo₂O₄-ZnCo₂O₄/CC toward 1 mM H₂S at different pH (4.4 to 9.4) (**Figure S4A**). A significant change in the H₂S anodic peak potential (**Figure S4B**) and peak current (**Figure S4C**) have been observed upon changes in pH of the electrolyte. Lowest current response was observed at

pH 4.4, a gradual enhancement was observed from 4.4 to 7.4 before reaching maxima at 7.4. From 7.4 to 9.4, a steady decline in the peak current was observed. Thus, pH 7.4 was the optimum pH for maximum H_2S sensing performance.

Figure S4 (A) CV responses of MoS_2 -ZnCo₂O₄-ZnCo₂O₄/CC for 1 mM H₂S suspended in an electrolyte of different pH values; a) 4.4, b) 5.4, c) 6.4, d) 7.4, e) 8.4, and f) 9.4 and (B) corresponding plot for peak potential (V) vs. pH, (C) peak current (mA) vs. pH.

Figure S5 Selectivity of MoS_2 - $ZnCo_2O_4$ - $ZnCo_2O_4$ /CC: Amperometric experiments were conducted toward 100 μ M H₂S and 250 μ M of homocysteine, cysteine, Na₂S₂O₃, glutathione, H₂O₂, dopamine, ascorbic acid, uric acid, Na₂SO₃, Na₂S₂O₄, NO₂⁻, and NO in PBS, pH 7.4.

Figure S6 Chronoamperometric curves for real-time H₂S monitoring, (A) stimulated by 1 mM cysteine, (B) stimulated by 1 mM cysteine + 10 mM aspartate and (C) no stimulation.