Supplementary Information

Single-Molecule DNA Origami Aptasensors for Real-time Biomarker Detection

Keitel Cervantes-Salguero, ${ }^{\text {a }}$ Mark Freeley, ${ }^{\text {a }}$ Jorge L. Chávez, ${ }^{\text {b,* }}$ and Matteo Palma ${ }^{\text {a,* }}$
a. School of Biological and Chemical Sciences and Materials Research Institute, Queen Mary University of London, London, United Kingdom
b. Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio, United States.

Materials: All oligonucleotides and modified oligonucleotides were purchased from Integrated DNA Technologies (IDT) with the exception of the ATTO655 modified sequence which was purchased from Eurofins. M13mp18 viral DNA was purchased from Tilibit. Neutravidin and DPBS and TAE buffers were purchased from ThermoFisher. BSA-biotin and cortisol were purchased from Merck. MgCl_{2} and NaCl were purchased from Fisher Scientific.

Time-dependent fluorescence experiments: Experiments were performed on a Cary Eclipse Fluorescence Spectrophotometer. For the ATTO 488 dye and BHQ-1 black quencher, the excitation and emission were set at 503 nm and at 522 nm , respectively. Slits for excitation and emission were set at 5 nm . Data was obtained every 10.2 sec . For cortisol detection in Figure 1B, 90 nM ATTO 488-labelled aptamer in 300μ of $1 \times$ DPBS was introduced and allowed to equilibrate. Then, the quencher (BHQ1) was added at a final concentration of 100 nM (black arrow), mixed and let equilibrate. Finally, $1 \mu \mathrm{l}$ of 3 mM cortisol in ethanol was added to $300 \mu \mathrm{l}$ x DPBS solution, which was added and mixed by pipetting. For the orange curve: 1μ l ethanol was added and mixed by pipetting. It is important to note that the duplexed aptamer system is very sensitive to mechanical perturbations and solution changes, i.e. that even simple solution mixing with pipette led to duplex dehybridisation as shown by small changes in intensity in Figure 1 B at $6 \mathrm{~min}, 36 \mathrm{~min}$ and 63 min , although these would quickly re-equilibrate. Moreover, excessive additions of ethanol in the control experiment led to a significant intensity change similar to cortisol detection; therefore, we limited the amount of ethanol in solution to a maximum of $0.3 \% \mathrm{v} / \mathrm{v}$ in the total buffer solution.

Experiments in solution at other ionic concentrations: In order to understand the duplexed aptasensor's dynamic nature, we performed a series of experiments in solution at different ionic strengths at $25^{\circ} \mathrm{C}$. We evaluated the effect of ionic strength at intermediate concentrations between $1 \times$ DPBS and $1 \times \mathrm{DPBS} / 1.5 \mathrm{M} \mathrm{NaCl}$ and at $1 \times \mathrm{TAE} / \mathrm{MgCl}_{2}$ (40 mM Tris, 20 mM acetic acid, 2 mM EDTA, 12.5 mM MgCl) (see Figure S1). As $1 x$ DPBS buffers contains $\sim 150 \mathrm{mM} \mathrm{NaCl}$, additional NaCl was supplemented to reach final testing concentrations. For all curves: the ATTO 488-labeled aptamer in buffer was introduced and allowed to equilibrate. Then, the quencher was added after 10 min , mixed by pipetting and incubated for more than 1 hour. Finally, cortisol ($10 \mu \mathrm{M}$) was added (black arrow) and mixed by pipetting, resulting in an aptamer to cortisol ratio of 1:111. Experiments at all tested salt concentrations show formation of the dye/quencher duplex, despite partial duplex dehybridisation before the addition of cortisol, as seen from the slow increase in fluorescence over long periods (see scheme in Figure 1 A in main text). At $1 \times \mathrm{TAE} / \mathrm{MgCl}_{2}$, hybridisation is complete within 5 min followed by a dehybridisation faster than in the case of $1 \times$ DPBS $/ 1.5 \mathrm{M} \mathrm{NaCl}$. In $1 \times$ DPBS, after adding the quencher, hybridisation takes at least 5 min more than the rest of tested cases but dehybridisation has a similar rate. We concluded that even though detection in $1 x$ DBPS is possible, the dehybridisation rate alters the sensing capabilities of the system.

DNA origami synthesis: The DNA origami is a triangular-shaped origami previously reported, ${ }^{1}$ based off a design by Rothemund. ${ }^{2}$ It is a single-layer DNA sheet with 120 nm side length. It is synthesised from more than 200 short single strands (staples) and a 7249-nucleotide circular single-stranded DNA (scaffold). During origami preparation some staples were extended to allow hybridisation of functional components including the aptamer, biotin anchors, and fluorophore labels (see list of sequences at end of SI). The aptamer and biotin anchors were designed to extend from opposite faces of the DNA origami based on the number of turns in the DNA relative to each of their positions. ${ }^{3}$ The staples (Integrated DNA Technologies, $100 \mu \mathrm{M}$ in $1 \times$ TAE buffer) and the 12 modified staples for biotin were mixed with a ratio of 5:1 with the scaffold (M13mp18 viral DNA, Tibilit) at a final concentration of $1 \times$ TAE buffer $/ 12.5 \mathrm{mM} \mathrm{Mg}_{2}{ }^{+}$(annealing buffer). The modified A40staple, surface aptamer strand and ATTO 655-strand, and biotin strand were added in a 10:1, 500:1, 50:1, 500:1 ratio with respect to the scaffold. The mixture was heated to $90^{\circ} \mathrm{C}$ for 5 min and annealed from $90^{\circ} \mathrm{C}$ to room temperature at the rate of $0.2^{\circ} \mathrm{C}$ per min, which was performed in a PCR machine (Hybaid Sprint PCR Thermal Cycler, Thermo Scientific). The DNA origami was then purified by using 100 kDa MWCO spin filters (Amicon ${ }^{\circledR}$ Ultra, Ultracel- 100 K , Millipore). The final concentration of origami was 1.2 nM in $100 \mu \mathrm{l}$ annealing buffer.
solution ($3: 1$, sulfuric acid and hydrogen peroxide) for 2 hours. After this, coverslips were rinsed with mQ and sonicated in mQ for 10 min . Then, coverslips were sonicated in acetone for 10 min , rinsed with mQ , sonicated in ethanol for 10 min , and finally coverslips were blown dry with Argon. Cloning cylinders were glued to the cleaned microscope coverslips, where each cloning cylinder could be used as a reaction chamber or well. Coverslips were stored at $-20^{\circ} \mathrm{C}$ in a Falcon tube filled with Argon. Before using, coverslips were equilibrated at room temperature. Then, plasma cleaned for 30 min. Coverslips were allowed to cool to room temperature as they were usually hot. Then, wells were passivated with $1 \mathrm{mg} / \mathrm{ml}$ BSA-biotin via physisorption for 10 min , rinsed with $1 x$ DPBS, conjugated with $1 \mathrm{mg} / \mathrm{ml}$ neutravidin for 10 min , rinsed with $1 x$ DPBS and exchanged to $1 \times$ TAE buffer $/ 12.5 \mathrm{mM} \mathrm{Mg}{ }_{2}{ }^{+}$. Finally, the neutravidin-coated surface was sparsely conjugated with 240 pM biotinylated DNA origami in $1 \times$ TAE buffer $/ 12.5 \mathrm{mM} \mathrm{Mg}_{2}{ }^{+}$for 2 min and rinsed with $1 \times$ TAE buffer $/ 12.5 \mathrm{mM} \mathrm{Mg}^{+}$. Before the TIRFM experiments, the buffer in the wells was exchanged to $1 x$ DPBS.

Total Internal Reflection Fluorescence (TIRF) Microscopy: Imaging for the single-molecule detection on a surface (Figure 3B) was performed using an LSM710 ELYRA PS. 1 in TIRF mode with 642 nm laser excitation at 30\% power, LP655 filter and 100 ms camera acquisition time. TIRF time series of the same area were performed at the following three states (See Figure S3 for snapshots of the acquired time series and Figure $S 4$ for representative single-molecule traces): (1) recognition of DNA origamis via the single-molecule fluorescence of ATTO 655 where we confirmed single-molecules by photobleaching events (see representative event in Figure S4C); (2) addition of quencher (200 nM final concentration) in 1 x DPBS with 10 min incubation where loss of fluorescence indicated dye/quencher duplex formation - after the 10 minutes this state was imaged for approximately 30 seconds to confirm that the quencher had bound; (3) addition of cortisol biomarker (1μ; $500 \mu \mathrm{M}-10$ $\mu \mathrm{M}$ final concentration) in $1 \times$ DPBS to the chamber without mixing - single step detection was observed 14 sec after cortisol addition. Only 2 individual aptasensors showed no detection after 1 min 47 sec of cortisol addition.

Analysis of TIRF Microscopy: Using ImageJ, we analysed a TIRF microscopy time lapse (see Figure S3 for representative snapshots). Initially, a time lapse was loaded into ImageJ as a Stack. Then, bright spots were visually identified. A 2×2 pixels region was selected on the bright spot and shifted around the spot in such a way that the maximum intensity was obtained using the ImageJ's Plot Z-axis Profile tool. For each bright spot we also obtained a nearby background signal.
In order to determine if a fluorescent spot came from an individual aptasensor, we looked at photobleaching and blinking of the dye, where a single-step decrease in intensity equivalent to the measured background would indicate a single-molecule aptasensor (example seen in figure S4D). This behaviour was distinct from single molecule binding events, where the loss of intensity would not decrease to the background intensity and was instead dimmed.
For single-molecule binding events the observed intensity first decreased in a single step after the quencher was added and hybridised. In general, all the bright spots in the time lapses decrease their intensity after adding the quencher and waiting the 10 minutes incubation. Among those quenched single-molecules, we chose those with signal to noise ratio of at least 1.44 (calculated as signal ${ }^{2} /$ noise 2). When cortisol was detected the signal recovered, again in a single step, to the initial intensity recorded prior to adding the quencher. For a detection cut-off after adding cortisol, we considered a binding event to occur when the intensity recovered to the initial intensity recorded before the quencher was added. We confirmed 1 single-molecule bright spot per $36.4 \mu \mathrm{~m}^{2}$ after evaluating 68 bright spots in an area of $1310.5 \mu \mathrm{~m}^{2}$.

Atomic Force Microscopy (AFM): AFM characterisation in liquid was carried out on a Bruker Dimension FastScan in Peak Force Tapping mode with Fast Scan D tips from Bruker and was performed on a freshly cleaved mica substrate. Scanning buffer was the origami annealing buffer ($1 \times$ TAE buffer/ $12.5 \mathrm{mM} \mathrm{Mg}_{2}{ }^{+}$).

Theoretical melting temperature calculations: The melting temperatures were calculated using OligoAnalyzer software from IDT where the DNA was set at $1 \mu \mathrm{M}$ with varied concentrations of NaCl and MgCl_{2}. Calculated melting temperature for the trigger (highlighted in green in the sections related to DNA sequences for the in-solution aptasensor and single-molecule surface-based aptasensor: $1 \mu \mathrm{M} 150 \mathrm{mM}(1 x \mathrm{DPBS}) 35.7^{\circ} \mathrm{C}, 1 \mu \mathrm{M} 300 \mathrm{mM} \mathrm{NaCl} 38.2^{\circ} \mathrm{C}$. Calculated melting temperature for the quencher duplex (highlighted in light blue in the DNA sequences section): $1 \mu \mathrm{M} 150 \mathrm{mM} \mathrm{NaCl}(1 x \mathrm{DPBS}) 56.7^{\circ} \mathrm{C}, 1 \mu \mathrm{M}$ $300 \mathrm{mM} \mathrm{NaCl} 59.6^{\circ} \mathrm{C}$. Other DNA segments such as the "ATTO 655-strand" and the surface aptamer capturing strand (highlighted in purple in the DNA sequences section) were designed using simulation packages such as NUPACK and OligoAnalyzer from IDT for the tested 150 mM NaCl in such a way that 100% hybridisation rate was predicted at $25^{\circ} \mathrm{C}$.

DNA sequences for the in-solution aptasensor:
in-solution aptamer: /5ATTO488N/ ctctcgggacgac GCCCGCATGTTCCATGGATAGTCTTGACTA gtcgtccc
quencher-BHQ1: gtcgtcccgagag /3BHQ_1/
blocker: gggacgacTAGTCAAGACTATCCATGGAACATGCGGG

DNA sequences for the single-molecule surface-based aptasensor:
Surface aptamer: CACGCTGTTGAATGTCTGAC ctctcgggacgac GCCCGCATGTTCCATGGATAGTCTTGACTA gtcgtccc
modified A40-staple: CGTGATTAGGTAAGGCCTTA GTCAGACATTCAACAGCGTG TTTTT
TTAGTATCGCCAACGCTCAACAGTCGGCTGTC
ATTO 655-strand: /ATTO655/ TAAGGCCTTACCTAATCACG
quencher-iowa: gtcgtcccgagag /3IAbRQSp/

Modified staples for the biotin anchor and biotin strand:
A52-staple: CCCATCCTCGCCAACATGTAATTTAATAAGGC CTGATGATTGATACCG
A44-staple: TCAATAATAGGGCTTAATTGAGAATCATAATT CTGATGATTGATACCG A07-staple: AAAGACAACATTTTCGGTCATAGCCAAAATCA CTGATGATTGATACCG A15-staple: GGAGGGAATTTAGCGTCAGACTGTCCGCCTCC CTGATGATTGATACCG B52-staple: GTACAACGAGCAACGGCTACAGAGGATACCGA CTGATGATTGATACCG B44-staple: ATTGTGTCTCAGCAGCGAAAGACACCATCGCC CTGATGATTGATACCG B07-staple: AACCAGACGTTTAGCTATATTTTCTTCTACTA CTGATGATTGATACCG B15-staple: GATTAGAGATTAGATACATTTCGCAAATCATA CTGATGATTGATACCG C52-staple: CGCGCGGGCCTGTGTGAAATTGTTGGCGATTA CTGATGATTGATACCG C44-staple: CCAGGGTGGCTCGAATTCGTAATCCAGTCACG CTGATGATTGATACCG C07-staple: GGACATTCACCTCAAATATCAAACACAGTTGA CTGATGATTGATACCG C15-staple: TGACCTGACAAATGAAAAATCTAAAATATCTT CTGATGATTGATACCG Biotin strand: /5Biosg/CGGTATCAATCATCAG

Staple strands for the triangular DNA origami:
A01: CGGGGTTTCCTCAAGAGAAGGATTTTGAATTA
A02: AGCGTCATGTCTCTGAATTTACCGACTACCTT
A03: TTCATAATCCCCTTATTAGCGTTTTTCTTACC
A04: ATGGTTTATGTCACAATCAATAGATATTAAAC
A05: TTTGATGATTAAGAGGCTGAGACTTGCTCAGTACCAGGCG
A06: CCGGAACCCAGAATGGAAAGCGCAACATGGCT
A07: AAAGACAACATTTTCGGTCATAGCCAAAATCA
A08: GACGGGAGAATTAACTCGGAATAAGTTTATTTCCAGCGCC
A09: GATAAGTGCCGTCGAGCTGAAACATGAAAGTATACAGGAG
A10: TGTACTGGAAATCCTCATTAAAGCAGAGCCAC
A11: CACCGGAAAGCGCGTTTTCATCGGAAGGGCGA
A12: CATTCAACAAACGCAAAGACACCAGAACACCCTGAACAAA
A13: TTTAACGGTTCGGAACCTATTATTAGGGTTGATATAAGTA
A14: CTCAGAGCATATTCACAAACAAATTAATAAGT
A15: GGAGGGAATTTAGCGTCAGACTGTCCGCCTCC
A16: GTCAGAGGGTAATTGATGGCAACATATAAAAGCGATTGAG
A17: TAGCCCGGAATAGGTGAATGCCCCCTGCCTATGGTCAGTG
A18: CCTTGAGTCAGACGATTGGCCTTGCGCCACCC
A19: TCAGAACCCAGAATCAAGTTTGCCGGTAAATA
A20: TTGACGGAAATACATACATAAAGGGCGCTAATATCAGAGA
A21: CAGAGCCAGGAGGTTGAGGCAGGTAACAGTGCCCG
A22: ATTAAAGGCCGTAATCAGTAGCGAGCCACCCT
A23: GATAACCCACAAGAATGTTAGCAAACGTAGAAAATTATTC
A24: GCCGCCAGCATTGACACCACCCTC
A25: AGAGCCGCACCATCGATAGCAGCATGAATTAT
A26: CACCGTCACCTTATTACGCAGTATTGAGTTAAGCCCAATA
A27: AGCCATTTAAACGTCACCAATGAACACCAGAACCA
A28: ATAAGAGCAAGAAACATGGCATGATTAAGACTCCGACTTG
A29: CCATTAGCAAGGCCGGGGGAATTA
A30: GAGCCAGCGAATACCCAAAAGAACATGAAATAGCAATAGC
A31: TATCTTACCGAAGCCCAAACGCAATAATAACGAAAATCACCAG
A32: CAGAAGGAAACCGAGGTTTTTAAGAAAAGTAAGCAGATAGCCG
A33: CCTTTTTTTCATTTAACAATTTCATAGGATTAG
A34: TTTAACCTATCATAGGTCTGAGAGTTCCAGTA
A35: AGTATAAAATATGCGTTATACAAAGCCATCTT
A36: CAAGTACCTCATTCCAAGAACGGGAAATTCAT
A37: AGAGAATAACATAAAAACAGGGAAGCGCATTA
A38: AAAACAAAATTAATTAAATGGAAACAGTACATTAGTGAAT
A39: TTATCAAACCGGCTTAGGTTGGGTAAGCCTGT
A40: TTAGTATCGCCAACGCTCAACAGTCGGCTGTC
A41: TTTCCTTAGCACTCATCGAGAACAATAGCAGCCTTTACAG
A42: AGAGTCAAAAATCAATATATGTGATGAAACAAACATCAAG
A43: ACTAGAAATATATAACTATATGTACGCTGAGA
A44: TCAATAATAGGGCTTAATTGAGAATCATAATT
A45: AACGTCAAAAATGAAAAGCAAGCCGTTTTTTATGAAACCAA A46: GAGCAAAAGAAGATGAGTGAATAACCTTGCTTATAGCTTA A47: GATTAAGAAATGCTGATGCAAATCAGAATAAA

A48: CACCGGAATCGCCATATTTAACAAAATTTACG
A49: AGCATGTATTTCATCGTAGGAATCAAACGATTTTTTGTTT
A50: ACATAGCGCTGTAAATCGTCGCTATTCATTTCAATTACCT
A51: GTTAAATACAATCGCAAGACAAAGCCTTGAAA
A52: CCCATCCTCGCCAACATGTAATTTAATAAGGC
A53: TCCCAATCCAAATAAGATTACCGCGCCCAATAAATAATAT
A54: TCCCTTAGAATAACGCGAGAAAACTTTTACCGACC
A55: GTGTGATAAGGCAGAGGCATTTTCAGTCCTGA
A56: ACAAGAAAGCAAGCAAATCAGATAACAGCCATATTATTTA
A57: GTTTGAAATTCAAATATATTTTAG
A58: AATAGATAGAGCCAGTAATAAGAGATTTAATG
A59: GCCAGTTACAAAATAATAGAAGGCTTATCCGGTTATCAAC
A60: TTCTGACCTAAAATATAAAGTACCGACTGCAGAAC
A61: GCGCCTGTTATTCTAAGAACGCGATTCCAGAGCCTAATTT
A62: TCAGCTAAAAAAGGTAAAGTAATT
A63: ACGCTAACGAGCGTCTGGCGTTTTAGCGAACCCAACATGT
A64: ACGACAATAAATCCCGACTTGCGGGAGATCCTGAATCTTACCA
A65: TGCTATTTTGCACCCAGCTACAATTTTGTTTTGAAGCCTTAAA
B01: TCATATGTGTAATCGTAAAACTAGTCATTTTC
B02: GTGAGAAAATGTGTAGGTAAAGATACAACTTT
B03: GGCATCAAATTTGGGGCGCGAGCTAGTTAAAG
B04: TTCGAGCTAAGACTTCAAATATCGGGAACGAG
B05: ACAGTCAAAGAGAATCGATGAACGACCCCGGTTGATAATC
B06: ATAGTAGTATGCAATGCCTGAGTAGGCCGGAG
B07: AACCAGACGTTTAGCTATATTTTCTTCTACTA B08: GAATACCACATTCAACTTAAGAGGAAGCCCGATCAAAGCG B09: AGAAAAGCCCCAAAAAGAGTCTGGAGCAAACAATCACCAT B10: CAATATGACCCTCATATATTTTAAAGCATTAA B11: CATCCAATAAATGGTCAATAACCTCGGAAGCA B12: AACTCCAAGATTGCATCAAAAAGATAATGCAGATACATAA B13: CGTTCTAGTCAGGTCATTGCCTGACAGGAAGATTGTATAA B14: CAGGCAAGATAAAAATTTTTAGAATATTCAAC
B15: GATTAGAGATTAGATACATTTCGCAAATCATA
B16: CGCCAAAAGGAATTACAGTCAGAAGCAAAGCGCAGGTCAG
B17: GCAAATATTTAAATTGAGATCTACAAAGGCTACTGATAAA
B18: TTAATGCCTTATTTCAACGCAAGGGCAAAGAA
B19: TTAGCAAATAGATTTAGTTTGACCAGTACCTT
B20: TAATTGCTTTACCCTGACTATTATGAGGCATAGTAAGAGC
B21: ATAAAGCCTTTGCGGGAGAAGCCTGGAGAGGGTAG
B22: TAAGAGGTCAATTCTGCGAACGAGATTAAGCA
B23: AACACTATCATAACCCATCAAAAATCAGGTCTCCTTTTGA
B24: ATGACCCTGTAATACTTCAGAGCA
B25: TAAAGCTATATAACAGTTGATTCCCATTTTTG
B26: CGGATGGCACGAGAATGACCATAATCGTTTACCAGACGAC
B27: TAATTGCTTGGAAGTTTCATTCCAAATCGGTTGTA
B28: GATAAAAACCAAAATATTAAACAGTTCAGAAATTAGAGCT
B29: ACTAAAGTACGGTGTCGAATATAA
B30: TGCTGTAGATCCCCCTCAAATGCTGCGAGAGGCTTTTGCA
B31: AAAGAAGTTTTGCCAGCATAAATATTCATTGACTCAACATGTT
B32: AATACTGCGGAATCGTAGGGGGTAATAGTAAAATGTTTAGACT
B33: AGGGATAGCTCAGAGCCACCACCCCATGTCAA
B34: CAACAGTTTATGGGATTTTGCTAATCAAAAGG
B35: GCCGCTTTGCTGAGGCTTGCAGGGGAAAAGGT
B36: GCGCAGACTCCATGTTACTTAGCCCGTTTTAA
B37: ACAGGTAGAAAGATTCATCAGTTGAGATTTAG
B38: CCTCAGAACCGCCACCCAAGCCCAATAGGAACGTAAATGA
B39: ATTTTCTGTCAGCGGAGTGAGAATACCGATAT
B40: ATTCGGTCTGCGGGATCGTCACCCGAAATCCG
B41: CGACCTGCGGTCAATCATAAGGGAACGGAACAACATTATT
B42: AGACGTTACCATGTACCGTAACACCCCTCAGAACCGCCAC
B43: CACGCATAAGAAAGGAACAACTAAGTCTTTCC
B44: ATTGTGTCTCAGCAGCGAAAGACACCATCGCC
B45: TTAATAAAACGAACTAACCGAACTGACCAACTCCTGATAA

B46: AGGTTTAGTACCGCCATGAGTTTCGTCACCAGGATCTAAA
B47: GTTTTGTCAGGAATTGCGAATAATCCGACAAT
B48: GACAACAAGCATCGGAACGAGGGTGAGATTTG
B49: TATCATCGTTGAAAGAGGACAGATGGAAGAAAAATCTACG
B50: AGCGTAACTACAAACTACAACGCCTATCACCGTACTCAGG
B51: TAGTTGCGAATTTTTTCACGTTGATCATAGTT
B52: GTACAACGAGCAACGGCTACAGAGGATACCGA
B53: ACCAGTCAGGACGTTGGAACGGTGTACAGACCGAAACAAA
B54: ACAGACAGCCCAAATCTCCAAAAAAAAATTTCTTA
B55: AACAGCTTGCTTTGAGGACTAAAGCGATTATA B56: CCAAGCGCAGGCGCATAGGCTGGCAGAACTGGCTCATTAT
B57: CGAGGTGAGGCTCCAAAAGGAGCC
B58: ACCCCCAGACTTTTTCATGAGGAACTTGCTTT
B59: ACCTTATGCGATTTTATGACCTTCATCAAGAGCATCTTTG
B60: CGGTTTATCAGGTTTCCATTAAACGGGAATACACT
B61: AAAACACTTAATCTTGACAAGAACTTAATCATTGTGAATT B62: GGCAAAAGTAAAATACGTAATGCC
B63: TGGTTTAATTTCAACTCGGATATTCATTACCCACGAAAGA B64: ACCAACCTAAAAAATCAACGTAACAAATAAATTGGGCTTGAGA B65: CCTGACGAGAAACACCAGAACGAGTAGGCTGCTCATTCAGTGA
C01: TCGGGAGATATACAGTAACAGTACAAATAATT
C02: CCTGATTAAAGGAGCGGAATTATCTCGGCCTC
C03: GCAAATCACCTCAATCAATATCTGCAGGTCGA
C04: CGACCAGTACATTGGCAGATTCACCTGATTGC
C05: TGGCAATTTTTTAACGTCAGATGAAAACAATAACGGATTCG C06: AAGGAATTACAAAGAAACCACCAGTCAGATGA C07: GGACATTCACCTCAAATATCAAACACAGTTGA C08: TTGACGAGCACGTATACTGAAATGGATTATTTAATAAAAG C09: CCTGATTGCTTTGAATTGCGTAGATTTTCAGGCATCAATA
C10: TAATCCTGATTATCATTTTGCGGAGAGGAAGG
C11: TTATCTAAAGCATCACCTTGCTGATGGCCAAC
C12: AGAGATAGTTTGACGCTCAATCGTACGTGCTTTCCTCGTT
C13: GATTATACACAGAAATAAAGAAATACCAAGTTACAAAATC
C14: TAGGAGCATAAAAGTTTGAGTAACATTGTTTG
C15: TGACCTGACAAATGAAAAATCTAAAATATCTT
C16: AGAATCAGAGCGGGAGATGGAAATACCTACATAACCCTTC C17: GCGCAGAGGCGAATTAATTATTTGCACGTAAATTCTGAAT C18: AATGGAAGCGAACGTTATTAATTTCTAACAAC C19: TAATAGATCGCTGAGAGCCAGCAGAAGCGTAA C20: GAATACGTAACAGGAAAAACGCTCCTAAACAGGAGGCCGA
C21: TCAATAGATATTAAATCCTTTGCCGGTTAGAACCT
C22: CAATATTTGCCTGCAACAGTGCCATAGAGCCG
C23: TTAAAGGGATTTTAGATACCGCCAGCCATTGCGGCACAGA
C24: ACAATTCGACAACTCGTAATACAT
C25: TTGAGGATGGTCAGTATTAACACCTTGAATGG
C26: CTATTAGTATATCCAGAACAATATCAGGAACGGTACGCCA
C27: CGCGAACTAAAACAGAGGTGAGGCTTAGAAGTATT
C28: GAATCCTGAGAAGTGTATCGGCCTTGCTGGTACTTTAATG
C29: ACCACCAGCAGAAGATGATAGCCC
C30: TAAAACATTAGAAGAACTCAAACTTTTTATAATCAGTGAG
C31: GCCACCGAGTAAAAGAACATCACTTGCCTGAGCGCCATTAAAA
C32: TCTTTGATTAGTAATAGTCTGTCCATCACGCAAATTAACCGTT
C33: CGCGTCTGATAGGAACGCCATCAACTTTTACA
C34: AGGAAGATGGGGACGACGACAGTAATCATATT
C35: CTCTAGAGCAAGCTTGCATGCCTGGTCAGTTG
C36: CCTTCACCGTGAGACGGGCAACAGCAGTCACA
C37: CGAGAAAGGAAGGGAAGCGTACTATGGTTGCT
C38: GCTCATTTTTTAACCAGCCTTCCTGTAGCCAGGCATCTGC
C39: CAGTTTGACGCACTCCAGCCAGCTAAACGACG
C40: GCCAGTGCGATCCCCGGGTACCGAGTTTTTCT
C41: TTTCACCAGCCTGGCCCTGAGAGAAAGCCGGCGAACGTGG
C42: GTAACCGTCTTTCATCAACATTAAAATTTTTGTTAAATCA
C43: ACGTTGTATTCCGGCACCGCTTCTGGCGCATC

C44: CCAGGGTGGCTCGAATTCGTAATCCAGTCACG
C45: TAGAGCTTGACGGGGAGTTGCAGCAAGCGGTCATTGGGCG
C46: GTTAAAATTCGCATTAATGTGAGCGAGTAACACACGTTGG
C47: TGTAGATGGGTGCCGGAAACCAGGAACGCCAG
C48: GGTTTTCCATGGTCATAGCTGTTTGAGAGGCG
C49: GTTTGCGTCACGCTGGTTTGCCCCAAGGGAGCCCCCGATT
C50: GGATAGGTACCCGTCGGATTCTCCTAAACGTTAATATTTT
C51: AGTTGGGTCAAAGCGCCATTCGCCCCGTAATG
C52: CGCGCGGGCCTGTGTGAAATTGTTGGCGATTA
C53: CTAAATCGGAACCCTAAGCAGGCGAAAATCCTTCGGCCAA
C54: CGGCGGATTGAATTCAGGCTGCGCAACGGGGGATG
C55: TGCTGCAAATCCGCTCACAATTCCCAGCTGCA
C56: TTAATGAAGTTTGATGGTGGTTCCGAGGTGCCGTAAAGCA
C57: TGGCGAAATGTTGGGAAGGGCGAT
C58: TGTCGTGCACACAACATACGAGCCACGCCAGC
C59: CAAGTTTTTTGGGGTCGAAATCGGCAAAATCCGGGAAACC
C60: TCTTCGCTATTGGAAGCATAAAGTGTATGCCCGCT
C61: TTCCAGTCCTTATAAATCAAAAGAGAACCATCACCCAAAT
C62: GCGCTCACAAGCCTGGGGTGCCTA
C63: CGATGGCCCACTACGTATAGCCCGAGATAGGGATTGCGTT
C64: AACTCACATTATTGAGTGTTGTTCCAGAAACCGTCTATCAGGG
C65: ACGTGGACTCCAACGTCAAAGGGCGAATTTGGAACAAGAGTCC
Link-A1C: TTAATTAATTTTTTACCATATCAAA
Link-A2C: TTAATTTCATCTTAGACTTTACAA
Link-A3C: CTGTCCAGACGTATACCGAACGA
Link-A4C: TCAAGATTAGTGTAGCAATACT Link-B1A: TGTAGCATTCCTTTTATAAACAGTT Link-B2A: TTTAATTGTATTTCCACCAGAGCC Link-B3A: ACTACGAAGGCTTAGCACCATTA Link-B4A: ATAAGGCTTGCAACAAAGTTAC Link-C1B: GTGGGAACAAATTTCTATTTTTGAG Link-C2B: CGGTGCGGGCCTTCCAAAAACATT Link-C3B: ATGAGTGAGCTTTTAAATATGCA Link-C4B: ACTATTAAAGAGGATAGCGTCC Loop: GCGCTTAATGCGCCGCTACAGGGC

Figure S1. Experiments in solution at different ionic concentration conditions

Figure S2. Representative AFM images in liquid of the triangular DNA origami

Figure S3. TIRF snapshots of the same area, where the bright spots indicate the presence of DNA origami with aptasensor. These are imaged in three different stages: A. "before detection", where TIRF is used to locate the DNA origami with the aptasensor; B. "quencher", where the origami is imaged 10 minutes after adding 200 nM quencher; and C. "after cortisol", where $10 \mu \mathrm{M}$ cortisol is added and the DNA origami is imaged approximately 14 seconds later.

Figure S4. Representative single-molecule traces. A) Representative single-molecule detection event for $10 \mu \mathrm{M}$ cortisol by TIRFM at three different states: (1) before adding the quencher, (2) after adding excess amount of quencher in solution, and (3) after addition of $10 \mu \mathrm{M}$ cortisol. The states 1,2 and 3 correspond to the states in the scheme in Figure 3 C in the main text. Detection was achieved 26.5 sec after cortisol addition. B) Detection of cortisol after 37.9 sec after cortisol addition. C) Detection of cortisol after 81.8 sec after cortisol addition; it also shows a single step photobleaching event after 94.4 sec . D) Detection of cortisol within 14 sec after cortisol addition; it also shows a single step photobleaching event after 35 sec. Red traces indicate the single-molecule aptasensor, while black traces indicate the reference background. Camera acquisition time was set at 100 ms .

References

1 D. Huang, K. Patel, S. Perez-Garrido, J. F. Marshall and M. Palma, ACS Nano, 2019, 13, 728-736.
2 P. W. K. Rothemund, Nature, 2006, 440, 297-302.
3 R. Wang, C. Nuckolls and S. J. Wind, Angew. Chem. Int. Ed. Engl., 2012, 51, 11325-11327.

