Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information**

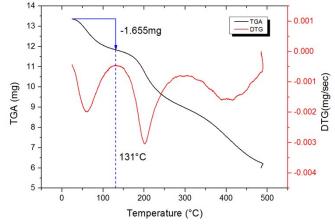
# Amino acid modified gadofullerene protects against insulin resistance induced by oxidative stress in 3T3-L1 adipocytes

Tong Yu <sup>† a, b</sup>, Wang Jia <sup>† a, b</sup>, Mingming Zhen <sup>a, b\*</sup>, Yue Zhou <sup>a, b</sup>, Jie Li <sup>a, b</sup> and Chunru Wang <sup>a, b\*</sup>

<sup>a</sup>Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

<sup>b</sup>University of Chinese Academy of Sciences, Beijing 100049, China.

†These two authors contributed equally to this work. .

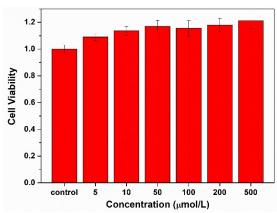

\*E-mail: zhenmm@iccas.ac.cn, crwang@iccas.ac.cn.

#### **Contents**

- 1. Characterizations of GF-Ala
- 2. Cytotoxicity test of GF-Ala
- 3. Concentration of H<sub>2</sub>O<sub>2</sub> generated by glucose oxidase

#### 1. Characterizations of GF-Ala.

Solid GF-Ala NPs were obtained by freeze drying, then characterized by elemental analysis (EA), TGA and XPS. The TGA result showed GF-Ala contained 12.4% moisture (Fig. S1).




**Fig. S1** Thermogravimetric analysis by a TGA spectrometer to determine the contents of water in GF-Ala (under N2, 5°C/min, 20-500°C).

**Table S1** Elemental analysis of carbon, hydrogen, and nitrogen contents in GF-Ala.

|        | C (%) | H (%) | N (%) |
|--------|-------|-------|-------|
| GF-Ala | 55.36 | 2.81  | 3.34  |

## 2. Cytotoxicity tests of GF-Ala



**Fig. S2** Cell viability of 3T3-L1 adipocytes incubated with GF-Ala at various concentration in the dark for 24 h.

### 3. Concentration of H<sub>2</sub>O<sub>2</sub> generated by glucose oxidase

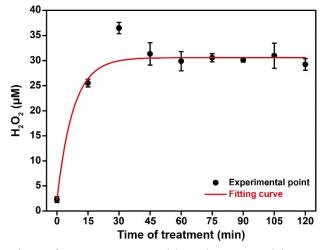



Fig. S3 Concentration of H<sub>2</sub>O<sub>2</sub> generated by glucose oxidase.