Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B This journal is © The Royal Society of Chemistry 2020

Supporting Information

Visualizing Mitochondria and Mouse Intestine with a Fluorescent Complex of a Naphthalene-based Dipolar Dye and Serum Albumin

Jong Min An,[‡] Heejo Moon,[‡] Yejin Kim,[‡] Sangrim Kang, Youngseo Kim, Yuna Jung, Sungnam Park, Peter Verwilst,* B. Moon Kim,* Jae Seung Kang,* and Dokyoung Kim*

This PDF file includes:

- 1. Materials and Methods
- 2. Supporting Figures: S1 to S18
- 3. NMR (¹H, ¹³C) Spectra and HRMS of IPNHC
- 4. Supporting Table: S1 to S10

1. Materials and Methods

General information

The chemical reagents were purchased from Aldrich (US), TCI (Japan), Alfa Aesar (US), and Acros Organics (US). The cellular sub-organelle imaging agents, LysoTracker Deep-Red, and MitoTracker Deep-Red were purchased from ThermoFisher (US). Commercially available reagents and anhydrous solvents were used without further purification. Chemical reactions were performed under argon atmosphere. TLC (thin-layer chromatography) was performed on the pre-coated silica gel 60F-254 glass plates (Merck KGaA, Germany). ¹H and ¹³C NMR spectra were recorded on an Agilent 400-MR DD2 Magnetic Resonance System (400 MHz) spectrophotometer in the indicated solvent. In the NMR spectra, the chemical shifts (δ) are reported in ppm, and multiplicities are indicated by s (singlet), d (doublet), t (triplet), dd (doublet of doublets), and m (multiplet). Coupling constants were reported in Hz. Chemical shifts were reported in parts per million (ppm) measured relative to the signal (0.00 ppm) of internal tetramethylsilane (TMS) in CDCl₃ (7.26 ppm for ¹H, 77.0 ppm for ¹³C). Highresolution mass spectrometry (HRMS) of compounds was further confirmed by Ultra-High resolution ESI Q-TOF mass spectrometer (Bruker, US) at Organic Chemistry Research Center of Sogang University (Rep. of Korea). Single crystal X-ray crystallography was performed at the Center for Research Facilities in the Research Institute of Pharmaceutical Sciences of Seoul National University (Rep. of Korea), using an Agilent SuperNova X-ray diffractometer (US). All UV-vis spectrum was measured under 150 msec of shutter time, the 1.0 µm of wavelength interval, 0.5 sec of integration time, 4122 cts of min. intensity (220-350 nm), and 1277 cts of min. intensity (350-500 nm). All fluorescence spectrum was obtained under the excitation at a maximum of absorption with 1.0 µm of wavelength interval and 6000 nm/min of scan speed (irradiation time), and 150 mW lamp power. Cell imaging was conducted using a confocal laser scanning microscope (CLSM, LSM-800, Carl Zeiss, Germany). The confocal images for IPNHC in HeLa cells were obtained under 405 nm excitation (Laser power: 2.00%) with a detector (GaAsP, Detector Gain: 650 V, Detection wavelength: 400-599 nm). In the CLSM imaging, the detection wavelength was 656–700 nm (excitation wavelength: 640 nm, laser power: 0.30%). Tissue imaging was conducted using two-photon microscopy (TPM, TCS SP5, Leica microsystem, Germany).

Quantum chemical calculation

Quantum chemical calculations using density functional theory (DFT) method were performed in the Gaussian 16 package, with the B3LYP-d3 functional and 6-31+G(d) basis set, to examine the frontier orbitals and optical properties of IPNHC. The optimized structure, frontier orbitals (HOMO and LUMO), and electronic absorption and emission spectra of IPNHC in DMSO were calculated. The integral equation formalism polarizable continuum (IEFPCM) solvation model was also applied.

Fluorescence spectroscopic titration of IPNHC with BSA

IPNHC was dissolved into the BSA solution in DI H_2O (Concentration of BSA: 50 mg/mL, 1 mL). After incubation (10 min) with a vortex of the mixture, fluorescence spectra were recorded with excitation at 300 nm.

Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) was performed using an affinity ITC (TA instruments, Inc, New Castle, USA) at 25 °C. Briefly, a solution of IPNHC (stock solution: 1.2 mM, solvent: phosphate buffer (pH 7.2), 10% (ν/ν) DMSO) was injected into the analysis vial containing BSA solution (0.2 mM) with the same solvent. In each experiment, 10 µL of the IPNHC solution was added with 5 min intervals (total 250 µL). The values are derived by integrating the peaks. The ORIGIN software (Originlab Corporation, MA, USA) was used for the calculation.

Cell culture

The immortalized human cervical cancer cell line (HeLa) was obtained from Korean Cell Line Bank (KCLB). Cells were cultured in Dulbecco's modified Eagle's media (Hyclone, US) supplemented with 10% fetal bovine serum (Hyclone) and 1% penicillin-streptomycin (Gibco). Cell lines were kept in humidified air containing 5% CO_2 at 37 °C.

Cytotoxicity analysis

The cytotoxicity of IPNHC and IPNHC-BSA complex was evaluated within the HeLa cell line by using the Cell Counting Kit-8 (CCK-8, Dojindo Molecular Tech. Inc, Japan) according to the manufacturer's protocols. The cells (5×10^3 cells per well) were seeded into 96-well plates and incubated for 24 h at 37 °C in a humidified 5% CO₂ incubator. The media was then refilled with fresh media, not containing serum or antibiotics. The cells were treated with diluted concentrations of IPNHC and IPNHC-BSA. The concentration of BSA was fixed at 50 mg/mL, and the cells were incubated for 2 h. After that, both IPNHC and IPNHC-BSA complex were removed by washing them in PBS (3 times), followed by changing the serum-free media. CCK-8 solution (10μ L, $10 \times$ working concentration) in a serum-free media was added to each well of a 96-well plate, and the cells were incubated for 2 h at 37 °C. After that, the absorbance was measured at a wavelength of 450 nm using a microplate reader (Multiskan FC, Thermo Fisher, MA, US). The percentage of cell cytotoxicity was calculated using the formula; Cell viability (%) = (Mean OD of sample × 100) / (Mean OD of the control group) (OD: optical density).

Statistical analysis

Data were presented as mean \pm SDs. An unpaired two-tailed t-test was used to compare the two groups. P-values of <0.05 were considered statistically significant. Statistical tests were carried out using GraphPad InStat version 5.01 (GraphPad Software, La Jolla, CA, US).

Supporting Figures

Fig. S1. Reagents and conditions: (a) diisopropyl azodicarboxylate (DIAD), triphenylphosphine (PPh₃), tetrahydrofuran (THF), 25 °C, overnight, Yield: 71%.

Fig. S2. (a) Emission spectra of IPNHC (0.1–50 μ M) in the deionized water (DI H₂O), measured after 1 min incubation at 25 °C. (b) Fluorescence intensity plots of IPNHC (0.1–50 μ M) at 494 nm. All data were collected at room temperature, and the emission spectra were measured upon excitation at the maximum absorbance wavelength. The regression analysis was performed using OriginPro 2018.

Fig. S3. (a) Emission spectra of IPNHC (6.25–50 μ M) in the presence of BSA (50 mg/mL) in DI H₂O, measured after 10 min incubation at 25 °C. Excitation wavelength: 300 nm (b) Fluorescence intensity plot derived from the panel (a) at 350 nm. The linear regression analysis was performed using OriginPro 2018.

Fig. S4. (a) Absorption and emission spectra of IPNHC (10 μ M) in DI H₂O and 9,10diphenylanthracene (DPA, 10 μ M) in EtOH. (b) Absorption and emission spectra of IPNHC-BSA complex (10 μ M of IPNHC + 50 mg/mL of BSA) in DI H₂O and DPA (10 μ M) in EtOH. (c) Absorption and emission spectra of IPNHC (10 μ M) in EtOH and DPA (10 μ M) in EtOH. All emission spectra were acquired upon excitation at the crossing point of absorption spectra. See detailed information in Table S2.

Fig. S5. Emission intensity of IPNHC (10 μ M) in the presence of mouse serum (MS, C57BL/6J mouse, a mixture of MS and PBS (1:1, ν/ν), total volume 1 mL), bovine serum albumin (BSA, 50 mg/mL), human serum (HS, Sigma-Aldrich product # H4522, 1 mL), goat serum (GS, Abcam product # ab7481, 1 mL), and fetal bovine serum (FBS, Hyclone product # SH30084.03, 1 mL). Emission intensity was acquired upon excitation at 360 nm at 25 °C after vortexing for 10 min, and the intensities were obtained at the maximum wavelength.

Fig. S6. Stability screening of IPNHC-BSA complex using various buffered solutions in the range of pH 3–9. (a) Emission spectra of IPNHC-BSA complex (10 μ M of IPNHC + 50 mg/mL of BSA) at various pH levels for 60 min. Emission spectra were measured upon excitation at 350 nm, for 0–60 min at 25 °C. (b) Emission intensity at the maximum wavelength from the panel (a).

Fig. S7. Stability screening of IPNHC-BSA complex under UV light. (a) Emission spectra of IPNHC-BSA complex (10 μ M of IPNHC + 50 mg/mL of BSA in pH 5 buffer) under UV light (3 W, 365 nm) for 60 min. Emission spectra were measured upon excitation at 350 nm, for 0–60 min at 25 °C. (b) Emission intensity at the maximum wavelength from the panel (a). The error bar represents the mean \pm S.D.

Fig. S8. Images of IPNHC (cyan) docked in the binding pocket of drug site 1 with key protein residues labeled. Yellow labels: lipophilic interaction. Purple label: Hydrogen bonding interaction.

Fig. S9. Determination of binding constant (K_b) of IPNHC toward BSA. (a) Benesi-Hildebrand plots of IPNHC toward BSA. (b) Benesi-Hildebrand plots of IPNHC with BSA containing warfarin (500 μ M). The concentration of BSA was fixed at 50 mg/mL in DI H₂O, and the intensity was derived from the UV/vis absorption spectra. (c) Results of binding constant via Benesi-Hildebrand calculation for IPNHC toward BSA. A₀: absorption intensity at 360 nm absence of IPNHC, A: absorption intensity at each concentration of IPNHC (concentration 0–50 μ M), and A_f: absorption intensity at 360 nm with IPNHC (concentration 50 μ M, at the saturation point). [IPNHC]: concentration of IPNHC.

Fig. S10. Isothermal titration calorimetry (ITC) graph of IPNHC and BSA. Heat rate was recorded as a function of time during 24 successive injection of IPNHC solution at 25 °C. A solution of IPNHC (stock solution: 1.2 mM, solvent: phosphate buffer (pH 7.2), 10% (ν/ν) DMSO) was injected into the analysis vial containing BSA solution (0.2 mM) with the same solvent. In each experiment, 10 µL of the IPNHC solution was added with 5 min intervals (total 250 µL). Inset graph: IPNHC titration profiles toward BSA. Red line: a sigmoidal fit (used function=Boltzmann) with parameters; n = 0.2, K_d (M) = 2.731×10⁻⁶, dH (kJ/mol) = -34.59, dS (J/mol·K) = -9.512. Parameter: stoichiometry (n), dissociation constant (K_d), enthalpy (dH), and entropy (dS).

Fig. S11. CLSM images of HeLa cells with IPNHC and IPNHC-BSA complex. CLSM images of HeLa cells with treatment of IPNHC (20 μ M, Green) and IPNHC-BSA complex (20 μ M of IPNHC + 50 mg/mL of BSA), co-incubated with (a) ER-Tracker Red (indicated as ER) and (b) Lyso-Tracker Red (indicated as lysosome). Scale bar: 10 μ m. Excitation wavelength and detection channel: IPNHC and IPNHC-BSA complex (Excitation: 405 nm, Detection: 405–559 nm), tracker (ER, lysosome) (Excitation: 640 nm, Detection: 656–700 nm). Right: A linear fitting plot to obtain the Pearson correlation coefficient (PCC). The fitting data was derived from the panel (a) and (b). The PCC values were calculated using FiJi Image-J software.

Fig. S12. Emission spectra of IPNHC (10 μ M) in PBS, FBS, DMEM, and the mixture of FBS and DMEM (10% FBS). The emission spectra were obtained under excitation at 369 nm.

Fig. S13. Cytotoxicity assay of IPNHC and IPNHC-BSA complex in HeLa cell lines using CCK-8. The detailed conditions are described in the experiment section.

Fig. S14. (a) Fluorescence histogram profiles within the jejunum at the green channel. The signal was analyzed by Image J software. Black area: Group 1, Red area: Group 2, and Blue area: Group 3. (b) Average fluorescent intensity plot obtained from the panel (a). Each error bar represents mean \pm SD, *p< 0.05, and the values were calculated from the triplicate measurement. The information of each group is presented in Fig 5.

Fig. S15. Two-photon action cross-section (TPACS) value of Acedan (10 μ M) and IPNHC (10 μ M) in DMSO.

Fig. S16. TPM images of dissected mouse organs after the intravenous injection of PBS control (100 μ L), IPNHC (5.0 mg/kg in PBS, 100 μ L), and IPNHC-BSA complex (5.0 mg/kg IPNHC in 50 mg/mL of BSA in PBS, 100 μ L). TPM Excitation: 750 nm. Detection channel: 430–605 nm. Laser power: 50 mW at the focal plane. Scale bar: 200 μ m.

Fig. S17. Stacked TPM images of the jejunum (Group 1; PBS, Group 2; IPNHC) acquired following the indicated vertical depths (0–243 um). Scale bar: 200 μ m. The detailed conditions are described in Fig. S16 caption.

Fig. S18. TPM images (plane/lateral view) of the jejunum (Group 1; PBS, Group 2; IPNHC, Group 3; IPNHC-BSA complex). Scale bar: 200 μm. The detailed conditions are described in Fig. S16 caption.

¹H NMR spectra of IPNHC

¹³C NMR spectra of IPNHC

HR-mass spectra of IPNHC

Supporting Tables

Table S1. Photophysical properties of IPNHC (10 μ M) in various solvents (EA: ethyl acetate, DMSO: dimethyl sulfoxide, IPA: *iso*-propanol, EtOH: ethanol, THF: tetrahydrofuran, DI H₂O: deionized water). ^aLog *P* values were calculated using ACDLog *P* database.

Compounds	Solvents	$\lambda_{abs}\left(nm\right)$	ϵ (L mol ⁻¹ cm ⁻¹)	$\lambda_{\rm fl}(nm)$	Stokes shift	^a Log P
	EA	345	167,720	443	98	
	DMSO	352	154,160	468	116	
- IPNHC -	IPA	345	187,440	456	111	
	EtOH	345	128,400	470	125	2.00
	THF	347	164,700	444	97	3.99
-	DI H ₂ O	340	36,820	495	155	
-	ACN	311	133,270	444	133	
-	20% EtOH in DI H ₂ O	346	128,520	492	146	
DMHN1	-	-	-	-	-	2.95

Table S2. Experimental parameters for determining the quantum yield of IPNHC and IPNHC-BSA complex. DPA: 9,10-diphenylanthracene. QY: quantum yield. EtOH: ethanol. DI H_2O : deionized water.

	DPA	IPNHC	DPA	IPNHC	IPNHC-BSA complex
$\lambda_{Eximax}(nm)$	349	349	371	371	371
QY _{ref}	0.88	-	0.88	-	-
η	1.356 (EtOH)	1.333 (DI H ₂ O)	1.356 (EtOH)	1.356 (EtOH)	1.333 (DI H ₂ O)
Ι	24619×10^3	4919×10^3	24619×10^{3}	19653×10^{3}	12511×10^{3}
QY	-	0.1875	-	0.7166	0.4677

Crystallographic Data

Crystallographic data of **IPNHC**

The crystal structure was deposited at the Cambridge Crystallographic Data Center (CCDC). **CCDC**: Deposition Number 1997498

Empirical formula	C ₂₁ H ₂₇ N ₃ O ₅
Formula weight	401.45
Temperature	294.34(11) K
Wavelength	Mo K α (λ = 0.71073 Å)
Crystal system	Monoclinic
Space group	P2 ₁ /c
a	22.1636(12) Å
b	12.4096(7) Å
С	8.0919(7) Å
Volume	2200.8(3) Å ³
Z, Calculated density	4, 1.212 g/cm ³
Absorption coefficient	0.087 mm ⁻¹
<i>F</i> (000)	856.0
Limiting indices	$-27 \le h \le 22, -15 \le k \le 15, -10 \le l \le 10$
Reflections collected / unique	23731 / 4552 [$R_{int} = 0.0729, R_{sigma} = 0.0511$]
Data / restraints / parameters	4552 / 24 / 289
Goodness-of-fit on F^2	1.047
Final R indices [I>2sigmai]	$R_1 = 0.0689, wR_2 = 0.1562$
Final R indices (all data)	$R_1 = 0.1120, wR_2 = 0.1835$
Largest diff. peak and hole	0.24 and -0.22 e. Å ⁻³

Table S3. Crystal Data and Structure Refinement for IPNHC

Atom	x	У	Z	U (eq)
02	7522.9(8)	4615.6(14)	2262(3)	58.2(5)
C8	6578.4(11)	6607(2)	-1417(3)	43.8(6)
C6	7488.2(11)	6239(2)	592(3)	45.0(6)
N2	8401.8(9)	7273.8(18)	884(3)	52.3(6)
C5	8085.5(11)	6564(2)	1479(4)	48.0(6)
O5	9241.7(9)	8673.4(16)	-53(3)	62.1(6)
C7	7167.5(11)	6872(2)	-629(3)	46.6(6)
C15	6304.8(11)	5635(2)	-980(3)	45.1(6)
C17	7198.6(11)	5288(2)	1015(3)	46.6(6)
O3	7045.3(10)	5446.4(19)	4171(3)	78.2(7)
C9	6230.2(12)	7290(2)	-2579(4)	53.7(7)
C14	5698.2(12)	5395(2)	-1699(4)	55.4(7)
C4	9320.4(12)	8245(2)	1304(4)	53.0(7)
C16	6642.7(12)	4974(2)	250(4)	50.5(7)
C13	5361.8(12)	6088(3)	-2808(4)	58.9(8)
N3	8942.9(9)	7536(2)	1875(3)	59.5(7)
O4	9803.6(9)	8410.3(18)	2490(3)	75.2(7)
C18	7391.6(12)	4788(2)	3818(4)	50.3(7)
O1	7714.0(11)	4116.4(18)	4827(3)	79.9(7)
C10	5648.7(12)	7050(3)	-3242(4)	61.7(8)
N1	4767.4(12)	5857(3)	-3494(4)	84.5(9)
C3	10292.3(15)	9074(3)	2028(5)	78.7(10)
C12	4495.4(15)	4846(3)	-3114(5)	94.0(13)
C19	7666.6(17)	4214(3)	6625(4)	75.8(9)
C11	4372.6(16)	6667(4)	-4344(6)	115.2(16)
C1	10645(2)	9467(5)	3611(6)	155(2)
C2	10667(2)	8433(5)	1029(8)	156(2)
C020	7563(8)	3117(6)	7238(9)	158(5)
C20'	7230(20)	3440(40)	6910(70)	86(14)
C021	8214(3)	4768(10)	7413(9)	128(4)
C21'	8310(20)	3970(70)	7570(60)	118(19)

Table S4. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for IPNHC. U_{eq} is defined as 1/3 of the trace of the U_{IJ} tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O2	62.5(12)	51.5(11)	60.2(13)	7.7(9)	7.4(10)	15.9(9)
C8	38.4(13)	48.1(14)	44.9(15)	-0.5(12)	6.1(11)	-3.6(11)
C6	37.8(13)	47.5(14)	49.5(17)	-1.7(12)	5.6(11)	1.2(11)
N2	40.4(12)	63.2(14)	50.3(15)	2.7(11)	-3.4(10)	-7.0(10)
C5	36.4(13)	55.2(15)	50.3(17)	2.5(13)	-0.6(12)	5.6(12)
O5	60.3(12)	72.5(13)	49.3(13)	8.1(10)	-5.9(10)	-12.7(10)
C7	41.7(14)	46.2(14)	52.1(17)	3.1(12)	7.6(12)	-6.6(11)
C15	39.1(13)	50.6(15)	45.5(16)	-3.9(12)	6.1(11)	-5.6(11)
C17	46.3(15)	45.3(14)	48.2(17)	2.4(12)	6.8(12)	6.6(11)
O3	76.6(14)	90.9(16)	65.6(16)	2.6(12)	5.6(12)	34.3(13)
C9	49.1(15)	56.3(16)	53.7(18)	8.2(13)	1.1(13)	-7.1(12)
C14	49.4(16)	60.6(17)	55.8(19)	-2.8(14)	6.5(14)	-15.8(13)
C4	41.3(15)	62.7(17)	51.8(19)	-2.3(15)	-3.5(13)	-6.1(12)
C16	50.2(15)	42.3(14)	59.9(19)	0.2(13)	11.1(14)	-8.9(12)
C13	44.4(16)	75(2)	55.4(19)	-11.4(15)	2.3(14)	-10.6(14)
N3	45.7(13)	79.4(16)	48.2(15)	11.5(12)	-10.2(11)	-13.4(12)
O4	58.0(12)	99.8(16)	60.3(14)	17.1(12)	-15.8(10)	-33.3(11)
C18	46.3(15)	44.2(15)	58.2(19)	3.5(13)	0.7(13)	-1.4(12)
01	99.9(17)	74.5(14)	62.2(15)	16.2(12)	2.6(12)	35.2(13)
C10	47.4(16)	75(2)	58(2)	5.5(15)	-6.1(14)	0.7(14)
N1	48.1(15)	105(2)	94(2)	-6.0(19)	-9.8(15)	-15.7(15)
C3	58.6(19)	93(2)	79(3)	18(2)	-7.4(18)	-31.2(18)
C12	59(2)	137(3)	85(3)	-17(2)	8.5(19)	-40(2)
C19	86(2)	77(2)	62(2)	11.5(17)	2.4(17)	14.1(18)
C11	55(2)	149(4)	130(4)	2(3)	-23(2)	7(2)
C1	140(4)	191(5)	118(4)	9(4)	-29(3)	-102(4)
C2	77(3)	175(5)	225(7)	-9(5)	49(4)	-12(3)
C020	282(14)	96(5)	99(5)	31(4)	38(6)	-17(6)
C20'	93(16)	86(17)	81(17)	1(9)	17(9)	1(9)
C021	114(5)	164(9)	105(5)	-54(5)	15(3)	-28(5)
C21'	120(20)	120(20)	110(20)	2(10)	5(10)	3(10)

Table S5. Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for IPNHC. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O2	C17	1.419(3)	C14	C13	1.379(4)
O2	C18	1.351(3)	C4	N3	1.343(3)
C8	C7	1.404(3)	C4	O4	1.343(3)
C8	C15	1.418(3)	C13	C10	1.420(4)
C8	С9	1.408(4)	C13	N1	1.381(4)
C6	C5	1.465(3)	O4	C3	1.453(4)
C6	C7	1.374(4)	C18	01	1.303(3)
C6	C17	1.410(3)	01	C19	1.479(4)
N2	C5	1.265(3)	N1	C12	1.445(5)
N2	N3	1.379(3)	N1	C11	1.439(5)
O5	C4	1.209(3)	C3	C1	1.480(5)
C15	C14	1.415(3)	C3	C2	1.475(6)
C15	C16	1.414(4)	C19	C020	1.478(7)
C17	C16	1.351(4)	C19	C20'	1.40(5)
O3	C18	1.185(3)	C19	C021	1.457(6)
С9	C10	1.353(4)	C19	C21'	1.55(5)

 Table S6. Bond Lengths for IPNHC

 Table S7. Bond Angles for IPNHC

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C18	02	C17	114.4(2)	C14	C13	C10	117.8(2)
C7	C8	C15	119.3(2)	C14	C13	N1	121.5(3)
C7	C8	C9	122.8(2)	N1	C13	C10	120.7(3)
C9	C8	C15	117.8(2)	C4	N3	N2	119.2(2)
C7	C6	C5	121.9(2)	C4	O4	C3	116.6(2)
C7	C6	C17	116.6(2)	O3	C18	O2	124.8(3)
C17	C6	C5	121.4(2)	O3	C18	01	127.2(3)
C5	N2	N3	115.2(2)	01	C18	O2	108.0(2)
N2	C5	C6	121.1(2)	C18	O1	C19	116.8(2)
C6	C7	C8	122.6(2)	C9	C10	C13	121.5(3)
C14	C15	C8	119.5(2)	C13	N1	C12	119.9(3)
C16	C15	C8	117.8(2)	C13	N1	C11	121.5(3)
C16	C15	C14	122.6(2)	C11	N1	C12	117.7(3)
C6	C17	02	117.7(2)	O4	C3	C1	106.4(3)
C16	C17	02	119.1(2)	O4	C3	C2	109.7(3)
C16	C17	C6	123.1(2)	C2	C3	C1	112.6(4)
C10	C9	C8	121.8(3)	01	C19	C21'	106(2)
C13	C14	C15	121.6(3)	C020	C19	01	107.0(4)
05	C4	N3	126.0(2)	C20'	C19	01	105(2)
05	C4	O4	125.0(3)	C20'	C19	C21'	113(2)
N3	C4	O4	109.0(3)	C021	C19	01	107.0(4)
C17	C16	C15	120.5(2)	C021	C19	C020	116.7(5)

A	В	С	D	Angle/°	А	В	С	D	Angle/°
02	C17	C16	C15	179.1(2)	C17	C6	C7	C8	0.7(4)
02	C18	01	C19	176.4(2)	O3	C18	01	C19	-3.0(4)
C8	C15	C14	C13	-0.6(4)	C9	C8	C7	C6	175.2(3)
C8	C15	C16	C17	2.3(4)	C9	C8	C15	C14	-0.8(4)
C8	C9	C10	C13	-0.6(5)	C9	C8	C15	C16	-176.9(2)
C6	C17	C16	C15	-3.5(4)	C14	C15	C16	C17	-173.7(3)
C5	C6	C7	C8	175.9(2)	C14	C13	C10	С9	-0.8(5)
C5	C6	C17	02	-4.0(4)	C14	C13	N1	C12	-3.0(5)
C5	C6	C17	C16	178.6(2)	C14	C13	N1	C11	166.0(4)
C5	N2	N3	C4	176.9(3)	C4	O4	C3	C1	159.7(4)
05	C4	N3	N2	-2.1(5)	C4	O4	C3	C2	-78.2(4)
05	C4	O4	C3	-6.4(5)	C16	C15	C14	C13	175.3(3)
C7	C8	C15	C14	176.4(2)	N3	N2	C5	C6	177.5(2)
C7	C8	C15	C16	0.2(4)	N3	C4	O4	C3	174.0(3)
C7	C8	С9	C10	175.6(3)	O4	C4	N3	N2	177.6(2)
C7	C6	C5	N2	-19.0(4)	C18	O2	C17	C6	95.1(3)
C7	C6	C17	02	179.4(2)	C18	O2	C17	C16	-87.4(3)
C7	C6	C17	C16	2.0(4)	C18	01	C19	C020	131.8(7)
C15	C8	C7	C6	-1.8(4)	C18	01	C19	C20'	97(2)
C15	C8	С9	C10	1.4(4)	C18	01	C19	C021	-102.4(6)
C15	C14	C13	C10	1.4(4)	C18	01	C19	C21'	-144(3)
C15	C14	C13	N1	179.3(3)	C10	C13	N1	C12	176.3(3)
C17	02	C18	03	-1.1(4)	C10	C13	N1	C11	-14.7(5)
C17	02	C18	01	179.5(2)	N1	C13	C10	С9	179.9(3)
C17	C6	C5	N2	164.6(3)					

 Table S8. Torsion Angles for IPNHC

Atom	x	У	ζ	U (eq)
Н5	8234.47	6242.47	2496.53	58
H7	7347.75	7500.81	-946.36	56
Н9	6404.6	7923.22	-2899.5	64
H14	5521.83	4753.34	-1416.87	66
H16	6481.25	4319.82	533.47	61
H3	9037.31	7249.02	2846.19	71
H10	5432.18	7524.99	-3997.69	74
H3A	10116.56	9690.06	1366.43	94
H12A	4741.71	4260.43	-3409.83	141
H12B	4093.07	4791.26	-3739.61	141
H12C	4470.83	4813.55	-1940.67	141
H19	7310.98	4660.32	6744.59	91
H19A	7534.48	4938.92	6890.82	91
H11A	4283.23	7198.84	-3553.86	173
H11B	3999.85	6337.22	-4860.37	173
H11C	4571.32	7004.5	-5184.33	173
H1A	10407.59	9989.26	4107.61	232
H1B	11016.92	9793.2	3387.07	232
H1C	10738.62	8872.22	4364.48	232
H2A	10828.89	7816.61	1662.5	235
H2B	10996.45	8867	754.93	235
H2C	10418.81	8197.12	18.96	235
H02A	7596.52	3127.47	8434.18	238
H02B	7862.54	2634.53	6910.97	238
H02C	7162.43	2876.69	6766.04	238
H20A	6842.4	3630.83	6305.57	129
H20B	7207.81	3408.76	8084.96	129
H20C	7353.35	2746.95	6541.92	129
H02D	8224.03	5482.53	6961.34	192
H02E	8568.75	4377.5	7200.84	192
H02F	8211.52	4810.64	8596.48	192
H21A	8411.43	3227.49	7383.68	177
H21B	8316.18	4086.17	8742.16	177
H21C	8602.97	4429.04	7164.06	177

Table S9. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for IPNHC

able SIU. A	tomic Occupancy				
Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H19	0.885(19)	H19A	0.115(19)	C020	0.885(19)
H02A	0.885(19)	H02B	0.885(19)	H02C	0.885(19)
C20'	0.115(19)	H20A	0.115(19)	H20B	0.115(19)
H20C	0.115(19)	C021	0.885(19)	H02D	0.885(19)
H02E	0.885(19)	H02F	0.885(19)	C21'	0.115(19)
H21A	0.115(19)	H21B	0.115(19)	H21C	0.115(19)

 Table S10. Atomic Occupancy for IPNHC