Supporting Information

A lysosome-targeting viscosity-sensitive fluorescent probe based on a novel functionalised near-infrared xanthene-indolium dye and its application in living cells

Chang Liu,a,b Tong Zhao,a,b Song He,a,b Liancheng Zhao,a,b,c and Xianshun Zeng*a,b

a Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. Fax: (+86)22-60215226; Tel: (+86)22-60216748; E-mail: xshzeng@tjut.edu.cn.

b Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China

c School of Materials Science and Engineering, Institute of Information Functional Materials & Devices, Harbin Institute of Technology, Harbin, 150001, China.

Contents

Table S1. Fluorescent probes for viscosity reported in the literatures

Fig. S1. Absorption and fluorescence spectra of Lyso-cy in 95% glycerol and water

Fig. S2. The pH-dependence of absorption and fluorescence spectra of Lyso-cy

Fig. S3. The pH-dependence of the fluorescence intensity of Lyso-cy in 95% glycerol

Fig. S4. Fluorescence intensity changes [(F710-FProbe)/(F95%Gly-FProbe)] of Lyso-cy at 710 nm in the presence of other relevant species in water.

Fig. S5. Cytotoxicity of Lyso-cy in HeLa cells

Fig. S6 Rapamycin stimulated fluorescence increase of the probe Lyso-cy.

Fig. S7-Fig.S9 HRMS spectra and 1H, 13C NMR
Materials and equipment

All chemicals and solvents used for synthesis were purchased from commercial suppliers and applied directly in the experiment without further purification. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), Lyso-Tracker Green DND 26 and Mito-Tracker Green were purchased from Beyotime Institute of Biotechnology. 1H NMR and 13C NMR were measured on a Bruker AVANCE III HD 400MHz spectrometer. Chemical shifts (d values) were reported in ppm down field from internal Me$_4$Si. High resolution mass spectra (HRMS) were acquired on an Agilent 6510 Q-TOF LC/MS instrument (Agilent Technologies, Palo Alto, CA) equipped with an electrospray ionization (ESI) source. Melting points were recorded on a melting point apparatus (RY-2, Tianjin, China). UV-vis absorption spectra were obtained with UV-2550 (Shimadzu, Japan) spectrophotometer. A Hitachi F-4600 spectrophotometer (Tokyo, Japan) was used for fluorescence measurements with a 700 V PMT voltage. The pH values were reported by a Mettler Toledo Seven Excellence PH meter (Shanghai, China). The absorbance for MTT analysis was recorded on a microplate reader (PL-9602). The confocal microscopy imaging was used Olympus FV1000-IX81 inverted fluorescence microscope. Image processing was analyzed with Olympus software (FV1000-ASW) and Image J software.

Detection of fluorescence quantum yield

Rhodamine B was used as a standard to calculate the relative fluorescence quantum yields according to the following equation:

$$\Phi_B = \Phi_1 \left(\frac{F_B}{F_1} \right) \left(\frac{A_1}{A_B} \right) \left(\frac{\lambda_{ex1}}{\lambda_{exB}} \right) \left(\frac{\eta_B}{\eta_1} \right)^2$$

Here, Φ represents quantum yield; F stands for integrated area under the corrected emission spectrum; A is absorbance at the excitation wavelength; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; and the subscripts 1 and B refer to the unknown and the standard, respectively.

Colocalization experiment in HeLa cells

Group 1: HeLa cells were pre-treated with the probe (0.2 μM) for 30 min and exposed to Rapamycin (2 μM) for another 30 min, then cells were treated with Lyso-Tracker Green (200 nM) for another 30 min.

Group 2: HeLa cells were pre-treated with the probe (0.2 μM) for 30 min and exposed to Nystatin (2 μM) for another 30 min, then cells were treated with Mito-Tracker Green (200 nM) for another 30 min.
Table S1 Fluorescent probes for viscosity reported in the literatures.

<table>
<thead>
<tr>
<th>Probes</th>
<th>λ_{em} (nm)</th>
<th>Targeted Localization</th>
<th>Response multiple</th>
<th>Journal<sup>32-36</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>570</td>
<td>Mitochondria</td>
<td>>3-fold</td>
<td>Dyes. Pigments. 2019, 168, 134</td>
</tr>
<tr>
<td></td>
<td>670</td>
<td>Mitochondria</td>
<td>167-fold</td>
<td>Anal. Chem. 2019, 91, 10302</td>
</tr>
<tr>
<td></td>
<td>535</td>
<td>-</td>
<td>14-fold</td>
<td>Polyhedron. 2019, 170, 440</td>
</tr>
<tr>
<td></td>
<td>578</td>
<td>-</td>
<td>180-fold</td>
<td>Polyhedron. 2019, 170, 440</td>
</tr>
<tr>
<td></td>
<td>603</td>
<td>-</td>
<td>120-fold</td>
<td>Polyhedron. 2019, 170, 440</td>
</tr>
</tbody>
</table>
Fig. S1 Absorption and fluorescence spectra of Lyso-cy. a) Absorption spectra of Lyso-cy (10 μM) and b) fluorescence spectra of Lyso-cy (5 μM) in 95% glycerol and water, respectively. c) Absorption spectra of Lyso-cy (10 μM) and d) fluorescence spectra of Lyso-cy (5 μM) in solvents with different polarity. e) fluorescence spectra of Lyso-cy (5 μM) in PBS buffer and water. λ_{ex} = 600 nm, slit: 10 nm.
Fig. S2 a) The pH-dependence of absorption spectra of *Lyso-cy* (10 μM). b) pH-dependence of fluorescence spectra of *Lyso-cy* (5 μM). c) Curve of absorbance at 647 nm of the probe versus increasing pH from 1.3 to 7.4. The pKa was deduced to be 3.59 (with correlation coefficient $R^2 = 0.992$). d) Curve of absorbance at 720 nm of the probe versus increasing pH from 8.3 to 12.3. The pKa was deduced to be 10.39 (with correlation coefficient $R^2 = 0.999$). $\lambda_{ex} = 600$ nm, slit: 10 nm.

Fig. S3 The pH-dependence of the fluorescence intensity of *Lyso-cy* (5 μM) with 95% glycerol. $\lambda_{ex} = 600$ nm, slit: 10 nm.
Fig. S4 Fluorescence intensity changes \([\frac{(F_i - F_{\text{Probe}})}{(F_{95\%\text{Gly}} - F_{\text{probe}})}]\) of the probe Lyso-cy (5 μM) at 710 nm in the presence of other relevant species (10 equiv.) in water. 1: Lyso-cy in 95% glycerol, 2: Lyso-cy + NaNO₂, 3: Lyso-cy + AgNO₃, 4: Lyso-cy + MgCl₂, 5: Lyso-cy + CaCl₂, 6: Lyso-cy + Fe(NO₃)₂, 7: Lyso-cy + Ni(NO₃)₂, 8: Lyso-cy + Hg(NO₃)₂, 9: Lyso-cy + Zn(NO₃)₂, 10: Lyso-cy + Cu(NO₃)₂, 11: Lyso-cy + GSH, 12: Lyso-cy + Hcy, 13: Lyso-cy + Cys, 14: Lyso-cy + ClO⁻, 15: Lyso-cy + ONOO⁻, 16: Lyso-cy + H₂O₂ and 17: Lyso-cy + TBHP; λₑₓ = 600 nm; slit: 10 nm.

Fig. S5 Cytotoxicity of Lyso-cy in HeLa cells. The cells were incubated with Lyso-cy at corresponding concentrations (0 μM, 0.5 μM, 1 μM, 3 μM, 5 μM, 10 μM) for 24 h.
Fig. S6 Rapamycin stimulated fluorescence increase of the probe **Lyso-cy**. A) Fluorescence imaging of **Lyso-cy** in HeLa cells. The cells were treated with **Lyso-cy** (1 μM) for 30 min, washed with PBS, and then incubated with different concentrations of Rapamycin (0-10 μM) for 20 min, respectively. Concentrations of Rapamycin, a): 0 μM, b): 0.5 μM, c): 1.0 μM, d): 3.0 μM, d): 5.0 μM, f): 10.0 μM. Red channel: λ_{ex} = 635 nm, λ_{em} = 670-770 nm. Scale bar: 80 μm. B) Relative fluorescence intensities of HeLa in panels (a)-(f).

Fig. S7 HRMS (LC/MS) spectra of **Lyso-cy**. The peak at m/z = 540.1467 was assigned to the mass of [**Lyso-cy - BF₄**]⁺.
Fig. S8 1H NMR of Lyso-cy (400 MHz, DMSO-d_6).

Fig. S9 13C NMR of Lyso-cy (100 MHz, DMSO-d_6).
Reference