Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supporting Information

A lysosome-targeting viscosity-sensitive fluorescent probe based on a novel functionalised near-infrared xanthene-indolium dye and its application in living cells

Chang Liu, a,b Tong Zhao, a,b Song He, a,b Liancheng Zhao Zhao and Xianshun Zeng*a,b

Contents

- Table S1. Fluorescent probes for viscosity reported in the literatures
- Fig. S1. Absorption and fluorescence spectra of Lyso-cy in 95% glycerol and water
- Fig. S2. The pH-dependence of absorption and fluorescence spectra of Lyso-cy
- Fig. S3. The pH-dependence of the fluorescence intensity of Lyso-cy in 95% glycerol
- Fig. S4. Fluorescence intensity changes [(F_i-F_{Probe})/(F_{95%Gly}-F_{probe})] of **Lyso-cy** at 710 nm in the presence of other relevant species in water.
- Fig. S5. Cytotoxicity of Lyso-cy in HeLa cells
- Fig. S6 Rapamycin stimulated fluorescence increase of the probe Lyso-cy.
- Fig. S7-Fig.S9 HRMS spectra and ¹H, ¹³ C NMR

^a Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. Fax: (+86)22-60215226; Tel: (+86)22-60216748; Email: xshzeng@tjut.edu.cn.

^b Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China

^c School of Materials Science and Engineering, Institute of Information Functional Materials& Devices, Harbin Institute of Technology, Harbin, 150001, China.

Materials and equipment

All chemicals and solvents used for synthesis were purchased from commercial suppliers and applied directly in the experiment without further purification. 3-(4, 5dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), Lyso-Tracker Green DND 26 and Mito-Tracker Green were purchased from Beyotime Institute of Biotechnology. ¹H NMR and ¹³C NMR were measured on a Bruker AVANCE III HD 400MHz spectrometer. Chemical shifts (d values) were reported in ppm down field from internal Me₄Si. High resolution mass spectra (HRMS) were acquired on an Agilent 6510 Q-TOF LC/MS instrument (Agilent Technologies, Palo Alto, CA) equipped with an electrospray ionization (ESI) source. Melting points were recorded on a melting point apparatus (RY-2, Tianjin, China). UV-vis absorption spectra were obtained with UV-2550 (Shimadzu, Japan) spectrophotometer. A Hitachi F-4600 spectrophotometer (Tokyo, Japan) was used for fluorescence measurements with a 700 V PMT voltage. The pH values were reported by a Mettler Toledo Seven Excellence PH meter (Shanghai, China). The absorbance for MTT analysis was recorded on a microplate reader (PL-9602). The confocal microscopy imaging was used Olympus FV1000-IX81 inverted fluorescence microscope. Image processing was analyzed with Olympus software (FV1000-ASW) and Image J software.

Detection of fluorescence quantum yield

Rhodamine B was used as a standard^{S1} to calculate the relative fluorescence quantum yields according to the following equation:

$$\Phi_{\rm B} = \Phi_1(F_{\rm B}/F_1)(A_1/A_{\rm B})(\lambda_{\rm ex1}/\lambda_{\rm exB})(\eta_{\rm B}/\eta_1)^2$$

Here, Φ represents quantum yield; F stands for integrated area under the corrected emission spectrum; A is absorbance at the excitation wavelength; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; and the subscripts 1 and B refer to the unknown and the standard, respectively.

Colocalization experiment in HeLa cells

Group 1: HeLa cells were pre-treated with the probe (0.2 μ M) for 30 min and exposed to Rapamycin (2 μ M) for another 30 min, then cells were treated with Lyso-Tracker Green (200 nM) for another 30 min.

Group 2: HeLa cells were pre-treated with the probe $(0.2 \,\mu\text{M})$ for 30 min and exposed to Nystatin $(2 \,\mu\text{M})$ for another 30 min, then cells were treated with Mito-Tracker Green (200 nM) for another 30 min.

 Table S1 Fluorescent probes for viscosity reported in the literatures.

Probes	$\lambda_{em}(nm)$	Targeted Localization	Response multiple	Journal ^{S2-S6}
HO PFV	570	Mitochondria	>3-fold	Dyes. Pigments. 2019, 168 , 134
NI-VIS	670	Mitochondria	167-fold	Anal. Chem. 2019, 91 , 10302
So [©] ₃	535	-	14-fold	Polyhedron. 2019, 170 , 440
SO [©] ₃	578	-	180-fold	Polyhedron. 2019, 170 , 440
SO ³ ₃	603	-	120-fold	Polyhedron. 2019, 170 , 440
H ₃ CH ₂ COOC MitoSN,	520	Mitochondria	35-fold	Spectrochim. Acta. A. 2018, 203 , 127.
HO NO	637	Lysosome	3.7-fold	Sens. Actuat. B Chem. 2020, 304 ,127271.

Fig. S1 Absorption and fluorescence spectra of **Lyso-cy**. a) Absorption spectra of **Lyso-cy** (10 μM) and b) fluorescence spectra of **Lyso-cy** (5 μM) in 95% glycerol and water, respectively. c) Absorption spectra of **Lyso-cy** (10 μM) and d) fluorescence spectra of **Lyso-cy** (5 μM) in solvents with different polarity. e) fluorescence spectra of **Lyso-cy** (5 μM) in PBS buffer and water. $\lambda_{ex} = 600$ nm, slit: 10 nm.

Fig. S2 a) The pH-dependence of absorption spectra of **Lyso-cy** (10 μM). b) pH-dependence of fluorescence spectra of **Lyso-cy** (5 μM). c) Curve of absorbance at 647 nm of the probe versus increasing pH from 1.3 to 7.4. The pKa was deduced to be 3.59 (with correlation coefficient $R^2 = 0.992$). d) Curve of absorbance at 720 nm of the probe versus increasing pH from 8.3 to 12.3. The pKa was deduced to be 10.39 (with correlation coefficient $R^2 = 0.999$). $\lambda_{ex} = 600$ nm, slit: 10 nm.

Fig. S3 The pH-dependence of the fluorescence intensity of **Lyso-cy** (5 μ M) with 95% glycerol. λ_{ex} = 600 nm, slit: 10 nm.

Fig. S4 Fluorescence intensity changes $[(F_i-F_{Probe})/(F_{95\%Gly}-F_{probe})]$ of the probe **Lysocy** (5 μM) at 710 nm in the presence of other relevant species (10 equiv.) in water. 1: **Lyso-cy** in 95% glycerol, 2: **Lyso-cy** + NaNO₂, 3: **Lyso-cy** + AgNO₃, 4: **Lyso-cy** + MgCl₂, 5: **Lyso-cy** + CaCl₂, 6: **Lyso-cy** + Fe(NO₃)₂, 7: **Lyso-cy** + Ni(NO₃)₂, 8: **Lyso-cy** + Hg(NO₃)₂, 9: **Lyso-cy** + Zn(NO₃)₂, 10: **Lyso-cy** + Cu(NO₃)₂, 11: **Lyso-cy** + GSH, 12: **Lyso-cy** + Hcy, 13: **Lyso-cy** + Cys, 14: **Lyso-cy** + ClO⁻, 15: **Lyso-cy** + ONOO⁻, 16: **Lyso-cy** + H₂O₂ and 17: **Lyso-cy** + TBHP; λ_{ex} = 600 nm; slit: 10 nm.

Fig. S5 Cytotoxicity of **Lyso-cy** in HeLa cells. The cells were incubated with **Lyso-cy** at corresponding concentrations (0 μ M, 0.5 μ M, 1 μ M, 3 μ M, 5 μ M, 10 μ M) for 24 h.

Fig. S6 Rapamycin stimulated fluorescence increase of the probe **Lyso-cy**. A) Fluorescence imaging of **Lyso-cy** in HeLa cells. The cells were treated with **Lyso-cy** (1 μM) for 30 min, washed with PBS, and then incubated with different concentrations of Rapamycin (0-10 μM) for 20 min, respectively. Concentrations of Rapamycin, a): 0 μM, b): 0.5 μM, c): 1.0 μM, d): 3.0 μM, d): 5.0 μM, f): 10.0 μM. Red channel: $\lambda_{ex} = 635$ nm, $\lambda_{em} = 670-770$ nm. Scale bar: 80 μm. B) Relative fluorescence intensities of HeLa in panels (a)-(f).

Fig. S7 HRMS (LC/MS) spectra of **Lyso-cy**. The peak at m/z = 540.1467 was assigned to the mass of [**Lyso-cy - BF**₄-]⁺.

Fig. S8 1 H NMR of Lyso-cy (400 MHz, DMSO- d_6).

Fig. S9 13 C NMR of Lyso-cy (100 MHz, DMSO- d_6).

Reference

- S1 J. G. Huang, J. C. Li, Y. L, Q. Q. Miao and K. Y. Pu, Nat. Mater., 2019, 18, 1133.
- S2 Y. L. Wu, W. Shu, C. Y. Zeng, B. P. Guo, J. W. Shi, J X. Jing, L. and Zhang, Dyes Pigments., 2019, **168**,134-139.
- S3 Y. Y. Zhang, Z. Li, W. Hu, Z. H. Liu, Anal. Chem., 2019, 91, 10302-10309.
- S4 H. Wang, F. Z. Cai, L. Zhou, D. Li, D. X. Feng, Y. Z. J. Wei, Feng, X. X. Gu, X. Z. Li, and Y. J. Wu, *Polyhedron*. 2019, **170**, 440-446.
- S5 H. Wang, B. Fang, L. F. Xiao, D. Li, L. Zhou, L. Kong, Y. Yu, X. Z. Li, Y. J. Wu, and Z. J. Hu, Spectrchim. Acta. A., 2018, **203**, 127-131.
- S6 B. Shen, L. F. Wang, X. Zhi, and Y. Qian, Sens. Actuat. B Chem., 2020, 304, 127271.