Electronic Supplementary Information

A tunable bifunctional hollow Co_3O_4/MO_3 (M=Mo,W) mixed-metal oxide nanozyme for sensing H_2O_2 and screening acetylcholinesterase activity and its inhibitor

Xiaodan Zhang, Yuwan Lu, Qiumeng Chen, Yuming Huang*

College of Chemistry and Chemical Engineering, Southwest University, Chongqing

400715, China

*Corresponding author. E-mail: <u>ymhuang@swu.edu.cn</u>

Synthesis of ZIF-67

ZIF-67 was prepared as the typical method [1] as follows: 0.582 g of $Co(NO_3)_2 \cdot 6H_2O$ and 0.656 g of 2-MIM were dissolved in 50 mL methanol to form solution A and B, respectively. Then, the solution B was rapidly poured into solution A under vigorous stirring for 10 min. Finally, the mixture was stand for 24 h at room temperature. After washing with methanol several times, the purple solid powder was collected by centrifugation and dried at 60 °C.

Characterization

The optical absorption was determined on a U-4100 UV-vis-NIR spectrophotometer (Hitachi, Japan). The morphologies of samples were acquired on an S-4800 field emission SEM (Hitachi, Japan) with an accelerating voltage of 25 kV. The TEM images were recorded with a JEM-2100F field emission transmission electron microscopy (JEOL, Japan) at an accelerating voltage of 200 kV. XPS analysis was performed by a ThermoFisher ESCALAB 250Xi spectrometer (Thermo Fisher Scientific, America) and XPS PeakFit software was used for peak fitting of XPS spectra. XRD patterns of the products were determined by a Bruker D8 Advance powder X-ray diffractometer (Bruker, Germany). Mettler Toledo FE20 pH meter (Mettler-Toledo Instruments Co. Ltd., China) was applied for pH value assay. N₂ adsorption-desorption isotherm data were measured on an ASAP 2020 Micromeritics instrument (Maike, USA) at 77 K.

Calculation of the inhibition efficiency

The inhibition efficiency (IE%) of AChE activity was calculated by the following equation:

IE% = $(A_{\text{inhibitor}} - A_{\text{without inhibitor}})/(A_0 - A_{\text{without inhibitor}}) \times 100\%$

where A_{inhibitor} and A_{without} inhibitor were the absorbance at 652 nm of TMB-H₂O₂-

 Co_3O_4/MoO_3 -ATCh/AChE system in the presence and absence of nesotigmine, respectively, and A_0 was the blank absorbance at 652 nm of TMB-H₂O₂-Co₃O₄/MoO₃-ATCh system.

Table S1. The atomic percentage of Co, Mo, W and O elements from XPS results in different products.

Sample	Co	Мо	W	0
Co ₃ O ₄	16.2%	_	_	43.9%
Co ₃ O ₄ /MoO ₃	11.8%	4.5%	_	51.2%
Co ₃ O ₄ /WO ₃	11.3%	_	3.6%	50.4%

Table S2. The peak area ratio of Co and O_{vac} in different samples from XPS analysis.

Sample	Co ²⁺ /Co _{total}	Co ³⁺ /Co _{total}	Co ²⁺ /Co ³⁺	Ovac/Ototal
Co ₃ O ₄	0.45	0.55	0.82	0.24
Co ₃ O ₄ /MoO ₃	0.51	0.49	1.04	0.44
Co ₃ O ₄ /WO ₃	0.76	0.24	3.17	0.46

Table S3. Reproducibility of response for 0.2 mM H_2O_2 among three batches of the as-prepared Co_3O_4/MoO_3 using the same preparation method.

Batch No.	1	2	3
Relative activity (%) ^a	100 ± 3.3	98.5 ± 6.5	94.2 ± 1.6
RSD (%)		1.78	

^a Relative standard deviation (RSD) for three duplicate determinations.

Method	Chamicals	Linear range	LOD	Ref
	Chemicals	(U/L)	U/L) (U/L)	
Fluorimetry	Au NCs	0.8 - 12	0.4	[2]
Fluorimetry	carbon QDs	0.05 - 2.0	0.05	[3]
Fluorimetry	C ₃ N ₄ nanodots	0.01 – 3	0.01	[4]
Colorimetry	TMB-ATCh-H ₂ O ₂	2.0 - 14	0.5	[5]
Colorimetry	TMB-MnO ₂ nanosheets	0.1 – 15	0.035	[6]
Colorimetry	TMB–CoOOH nanoflakes	0.05 - 5	0.033	[7]
Colorimetry	TMB-MnOOH nanowire	0.01 - 1.25	0.007	[8]
Colorimetry	TMB-Ag ⁺	0-0.03	0.0043	[9]
Colorimetry	Fe-N-C Sazymes-TMB	0.1 – 25	0.014	[10]
Colorimetry	TMB-H ₂ O ₂ -Co ₃ O ₄ /MoO ₃	0.005 - 1.0	0.001	This work

Table S4. Comparison of different methods for AChE detection.

Table S5. The results of neostigmine determination in the water samples

Samples*	Spiked (nM)	Found (nM)	Recovery (%)	RSD (%, <i>n</i> = 3)
Tap water	1	1.03	102.8	3.42
	6	6.08	101.4	4.30
	12	11.84	98.7	3.14
Jialing River water	1	0.96	95.5	1.03
	6	6.01	100.2	3.19
	12	11.71	97.6	1.42

* Tap water and river water samples were collected from our laboratory and Jialing River in Beibei (China, Chongqing), respectively.

Fig. S1. XRD patterns of ZIF-67.

Fig. S2. SEM of Co₃O₄ nanoflakes derived from ZIF-67 without Mo or W-doping.

Fig. S3. The full range XPS spectra of Co_3O_4 (black curve), Co_3O_4/MoO_3 (red curve) and Co_3O_4/WO_3 (blue curve) (a). XPS spectra of the Co 2p (b) and O1s (c) in pure Co_3O_4 .

Fig. S4. N₂ adsorption-desorption isotherms of Co_3O_4 , Co_3O_4/MoO_3 and Co_3O_4/WO_3 (a) and their corresponding pore size distribution (b).

Fig. S5. UV-vis absorption spectra of Co_3O_4/MoO_3 mediated TMB (a) ABTS (b) and OPD (c) colorimetric reactions (Insets show the corresponding solution photos). Conditions: 0.1 mM TMB, 0.5 mM ABTS, 1 mM OPD, 15 mg/L Co_3O_4/MoO_3 , 0.2 mM H_2O_2 , 30 °C, 20 min.

Fig. S6. UV-vis absorption spectra of TMB-H₂O₂ system in the presence of different Co₃O₄/MoO₃ concentrations (a) and the relative result (b) (Conditions: 0.1 mM of TMB, 0.2 M NaAc-HAc buffer (pH=4), 30 °C, 20 min); effects of pH (c) (Conditions: 0.1 mM of TMB, 12 mg/L of Co₃O₄/MoO₃, 30 °C, 20 min) and reaction temperature (d) on the peroxidase-like activity of Co₃O₄/MoO₃ (Conditions: 0.1 mM of TMB, 12 mg/L of Co₃O₄/MoO₃, 0.2 M NaAc-HAc buffer (pH=3.5), 20 min). Inset in Fig. c shows the corresponding photos of solution at different pH (3 to 7, from left to right).

Fig. S7. Steady-state kinetic assay of Co_3O_4/MoO_3 and Co_3O_4 . Michaelis-Menten curves for TMB (a) and H_2O_2 (b) of Co_3O_4/MoO_3 , and the corresponding Lineweaver-Burk plots for TMB (c) and H_2O_2 (d). Michaelis-Menten curves for TMB (e) and H_2O_2 (f) of Co_3O_4 , and the corresponding Lineweaver-Burk plots for TMB (g) and H_2O_2 (h).

Fig. S8. (a) UV-vis absorption spectra of TMB-Co₃O₄/MoO₃-H₂O₂ system in the presence of different H₂O₂ concentrations (0, 0.1 μ M, 0.5 μ M, 1 μ M, 3 μ M, 5 μ M, 8 μ M, 10 μ M, 30 μ M, 50 μ M, 80 μ M, 100 μ M, 150 μ M, 200 μ M, 500 μ M, 800 μ M and 1 mM, respectively). (b) Plot of ΔA_{652} versus H₂O₂ concentrations. Inset shows the corresponding linear calibration curve. The error bars represent the standard deviation of three replicate assays. The net absorption intensity ($\Delta A = A_i - A_0$, where A_i and A_0 were the absorbance at 652 nm in the presence and absence of H₂O₂, respectively).

Fig. S9. (a) Effect of ATCh concentration on ΔA of the TMB-Co₃O₄/MoO₃-H₂O₂ system in the presence of 1 U/L AChE. (b) Effect of incubation time on ΔA of the TMB-Co₃O₄/MoO₃-H₂O₂-ATCh system in the presence of 1 U/L AChE. The inhibitory absorption intensity ΔA denotes $A_0 - A_e$, where A_0 and A_e were the absorbance at 652 nm in the absence and presence of 1 U/L of AChE, respectively.

References

- F. L. Lyu, Y. C. Bai, Z. W. Li, W. J. Xu, Q. F. Wang, J. Mao, L. Wang, X. W. Zhang and Y. D. Yin, *Adv. Funct. Mater.*, 2017, 27, 1702324.
- 2. C. Y. Ke, Y. T. Wu and W. L. Tseng, Biosens. Bioelectron., 2015, 69, 46-53.
- W. H. Li, W. Li, Y. F. Hu, Y. L. Xia, Q. P. Shen, Z. Nie, Y. Huang and S. Z. Yao, *Biosens*. *Bioelectron.*, 2013, 47, 345-349.
- M. C. Rong, X. H. Song, T. T. Zhao, Q. H. Yao, Y. R. Wang and X. Chen, *J. Mater. Chem. C*, 2015, 3, 10916-10924.
- 5. T. Han and G. F. Wang, J. Mater. Chem. B, 2019, 7, 2613-2618.
- X. Yan, Y. Song, X. L. Wu, C. Z. Zhu, X. G. Su, D. Du and Y. H. Lin, *Nanoscale*, 2017, 9, 2317-2323.
- R. Jin, Z. H. Xing, D. S. Kong, X. Yan, F. M. Liu, Y. Gao, P. Sun, X. S. Liang and G. Y. Lu, J. Mater. Chem. B, 2019, 7, 1230-1237.
- L. J. Huang, D. W. Sun, H. B. Pu, Q. Y. Wei, L. P. Luo and J. L. Wang, Sens. Actuat. B, 2019, 290, 573-580.
- P. J. Ni, Y. J. Sun, H. C. Dai, S. Jiang, W. D. Lu, Y. L. Wang, Z. Li and Z. Li, Sens. Actuat. B, 2016, 226, 104-109.
- Y. Wu, L. Jiao, X. Luo, W. Q. Xu, X. Q. Wei, H. J. Wang, H. Y. Yan, W. L. Gu, B. Z. Xu, D. Du, Y. H. Lin and C. Z. Zhu, *Small*, 2019, 15, 1903108.