Supplementary Material

A novel hydrazide Schiff base self-assembled nanoprobe for selective detection of human serum albumin and its applications in renal disease surveillance

Zhi-Gang Wang^{a,1}, Xiao-Jing Yan^{a,1}, Hai-Bo Liu^b, De-Long Zhang^c, Wei Liu^d,

Cheng-Zhi Xie^{a,*}, Qing-Zhong Li^e, Jing-Yuan Xu^{a,*}

^aTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.

^bInstitute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China.

^cDepartment of Pharmacy, Tianjin Santan Hospital, Tianjin 300193, P. R. China.

^dThe Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China.

eThe Laboratory of Theoretical and Computational Chemistry, School of Chemistry

and Chemical Engineering, Yantai University, Yantai 264005, P.R. China.

¹These authors contributed equally.

Corresponding author. E-mail address: <u>xiechengzhi@tmu.edu.cn</u> (C.-Z. Xie), <u>xujingyuan@tmu.edu.cn</u> (J.-Y. Xu)

Fig. S1. ¹H-NMR spectrum of probe NPC in DMSO-d₆.

Fig. S2. ¹³C-NMR spectrum of probe NPC in DMSO-d₆.

Fig. S3. ESI-MS spectrum of probe NPC.

Fig. S4. (a) UV-vis absorption spectra of **NPC** (5 μ M) in DMF/PBS buffer solution (pH 7.4) with different DMF fractions. (b) The fluorescence emission spectra of **NPC** (5 μ M) in DMF/PBS buffer solution (pH 7.4) with different DMF fractions. Inset: photograph for corresponding color changes of **NPC** in solutions with different DMF fractions under 365 nm UV light. ($\lambda_{ex} = 450$ nm, slit: 5 nm/5 nm).

Fig. S5. The fluorescence emission spectra of NPC (5 μ M) upon addition of 1 equiv. HSA, other proteins (5 equiv. for BSA) and various amino acid in PBS (pH 7.4) buffer solution ($\lambda_{ex} = 450$ nm, slit: 5 nm/5 nm).

Fig. S6. The selectivity of NPC (5 μ M) to 1 equiv. HSA from various metal ions (5 μ M) in PBS (pH 7.4) buffer solution. ($\lambda_{ex} = 450$ nm, $\lambda_{em} = 513$ nm, slit: 5 nm/5 nm).

Fig. S7. The selectivity of **NPC** (5 μ M) to 1 equiv. HSA from various anions (5 μ M) in PBS (pH 7.4) buffer solution ($\lambda_{ex} = 450$ nm, $\lambda_{em} = 513$ nm, slit: 5 nm/5 nm).

Fig. S8. The fluorescence responses of NPC (5 μ M) to 1 equiv. HSA with the addition of various amino acids (5 μ M) in PBS (pH 7.4) buffer solution ($\lambda_{ex} = 450$ nm, $\lambda_{em} = 513$ nm, slit: 5 nm/5 nm).

Fig. S9. The fluorescence responses of NPC (5 μ M) to 1 equiv. HSA with the addition of various metal ions (5 μ M) in PBS (pH 7.4) buffer solution ($\lambda_{ex} = 450$ nm, $\lambda_{em} = 513$ nm, slit: 5 nm/5 nm).

Fig. S10. The fluorescence responses of NPC (5 μ M) to 1 equiv. HSA with the addition of various anions (5 μ M) in PBS (pH 7.4) buffer solution ($\lambda_{ex} = 450$ nm, $\lambda_{em} = 513$ nm, slit: 5 nm/5 nm).

Fig. S11. The fluorescence spectra of NPC (5 μ M) in different volume ratio of ethanol/water (a), glycerol/water (b) and methanol-glycerol (c) from 1:9 to 9:1 for studying the influence of polarity and viscosity on NPC, respectively ($\lambda_{ex} = 450$ nm, slit: 5 nm/5 nm).

Time-resolved fluorescence analysis

During the time-resolved fluorescence analysis, the curves generated for fluorescence lifetime intensity decay were fitted to the following equation to estimate the lifetime of the samples.

$$R(t) = \sum_{i=1}^{n} \alpha_i \exp(-\frac{t}{\tau_i})$$

Where, α_i denotes the pre-exponential factors of the i_{th} component and τ_i is its relative lifetime and *n* is the number of distinct decay components. Again, the mean lifetimes (τ_m) of the samples were calculated using the following equation.

$$\tau_m = \alpha_1 \tau_1 + \alpha_2 \tau_2$$

Fig. S12. Time-resolved fluorescence decay spectra of NPC (5 μ M) in the absence and with the incremental addition of HSA (0–5 μ M) (λ_{ex} = 450 nm, λ_{em} = 513 nm).

Table S1. Fluorescence lifetime decay parameters of NPC (5 μ M) with gradual addition of HSA.

System	[HSA] (µM)	$\tau_1(ns)$	α ₁ (%)	$\tau_2(ns)$	α ₂ (%)	$\tau_{m}\left(ns\right)$	χ^2
NPC-HSA	0	0.29	23.35	1.44	76.65	1.17	1.082
	2	0.44	25.15	2.00	74.85	1.61	1.034
	3	0.39	20.08	2.00	79.92	1.68	1.012
	4	0.33	14.09	1.92	85.91	1.70	1.080
	5	0.37	15.35	2.06	84.65	1.80	1.000

Fig. S13. The influence of pH value in the range of 2–12 on the fluorescence spectra of NPC (5 μ M) in the absence and presence of 1 equiv. HSA in PBS (pH 7.4) buffer solution ($\lambda_{ex} = 450$ nm, $\lambda_{em} = 513$ nm, slit: 5 nm/5 nm).

Fig. S14. The fluorescence intensity of **NPC** (5 μ M) in the absence and presence of 1 equiv. HSA during 70 min in PBS (pH 7.4) buffer solution for stability measurement ($\lambda_{ex} = 450 \text{ nm}, \lambda_{em} = 513 \text{ nm}, \text{slit: 5 nm/5 nm}$).

Fig. S15. (a) The fluorescence emission spectra of NPC (5 μ M) with the addition of different concentrations of HSA (0–1 equiv.) in PBS buffer solution (pH = 7.4). (b) The linear relationship between fluorescence intensity changes of probe NPC (5 μ M) at 513 nm and HSA concentrations in the range of 0–5 μ M. (λ_{ex} = 450 nm, slit: 5 nm/5 nm).

Fig. S16. (a) The fluorescence emission spectra changes of probe NPC (5 μ M) in PBS (pH 7.4) buffer solution after gradually increasing the concentrations of BSA (0–5 μ M). The inset shows the fluorescence intensity of NPC at 517 nm vs. BSA concentrations. (b) The fluorescence intensity changes of NPC (5 μ M) at 517 nm as a linear function of BSA (0–4 μ M) in PBS (pH 7.4) buffer solution. The inset shows the corresponding color changes of NPC with the increasing concentrations of BSA (λ_{ex} = 450 nm, slit: 5 nm/5 nm).

HSA binding studies

To better understand the interaction of **NPC** with HSA, the fluorescence quenching data was analyzed with the linear Stern–Volmer equation:

$$F_0/F = 1 + k_q \tau_0[Q] = 1 + K_{SV}[Q]$$

where F_0 and F represent the fluorescence intensity of HSA in the absence and presence of **NPC** which acted as quencher, k_q is the quenching rate constant, τ_0 denote the average lifetime of the HSA without quencher (about 10⁻⁸ s), [Q] is the concentration of probe **NPC** and K_{SV} is the Stern–Volmer quenching constant. As shown in Fig. S19a, the fluorescence intensity of HSA was gradually quenched by probe **NPC** and K_{SV} can be obtained from the slope of $F_0/F vs$. [Q] (Fig. S19a inset). From the k_q values, we can know the quenching process of HSA by **NPC** is a static or dynamic quenching process. The number of binding sites and the binding constant of **NPC** with HSA could be determined from the Scatchard equation:

 $\log[(F_0-F)/F] = \log K_b + n\log[Q]$

where K_b and n stand for the binding constant and binding sites, respectively. And the K_b and n can be obtained from the intercept and slope of log[(F₀-F)/F] *vs.* log[Q], respectively.

Fig. S17. (a) The fluorescence quenching of HSA (2 μ M) with the addition of probe NPC (0–4 μ M) in PBS (pH 7.4) buffer solution. Inset: Stern–Volmer plot of the fluorescence quenching of HSA induced by probe NPC. (b) The Modified Stern-Volmer plot of the fluorescence quenching of HSA induced by probe NPC in PBS (pH 7.4) buffer solution. ($\lambda_{ex} = 295$ nm, $\lambda_{em} = 332$ nm, slit: 5 nm/5 nm).

Fig. S18. Fluorescence lifetime tests (black line) and corresponding fittings (red line) of HSA in the absence (a) and the presence (b) of NPC in PBS (10 mM, pH 7.4). $\lambda_{ex} = 295 \text{ nm}, \lambda_{em} = 332 \text{ nm}.$

Fig. S19. The linear relationship of the fluorescence intensity with trypsin concentrations (0–0.65 mg/mL) in PBS buffer solution ($\lambda_{ex} = 450$ nm, $\lambda_{em} = 513$ nm, slit: 5 nm/5 nm).

Fig. S20. The competitive displacement effect of site-specific drugs warfarin and ibuprofen for NPC-HSA complex (5 μ M NPC and 5 μ M HSA) (λ_{ex} = 450 nm, λ_{em} = 513 nm, slit: 5 nm/5 nm).