Supporting Information for

High Catalytic Efficiency from Er3+ doped CeO2-x Nanoprobes for in

vivo Acute-Oxidative Damage and Inflammation Therapy

Yongmei Li*a, Yuemei Lib, Yandong Baic, Laixiang Lina, Yina Suna

^aNHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of

Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital &

Tianjin Institute of Endocrinology, Tianjin Medical University, No.6 Huanrui North

Road, Ruijing Street, Beichen District, Tianjin, 300134, China.

^bSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology,

No.92 Xidazhi Street, Nangang District, Harbin, Heilongjiang 150001, China.

^cTianjin Union Medical Center, NO.190 jieyuan Road, HongqiaoDistrict, Tianjin,

300121, China.

*This author is corresponding author.

Correspongdence: Yongmei Li, E-mail: liyongmei0811@sina.com

Contents

Figure S1. The EDS image of Er/Ce₂O₃ nanoparticles

Figure S2. The TEM image of Er/Ce₂O₃ nanoparticles

Figure S3. The XPS result for pure Ce₂O₃: Er NPs without hydrogen peroxide

Figure S4. The x-ray diffraction of pure Er/Ce₂O₃ NPs

Figure S5. The XPS of Er/Ce₂O₃ without H₂O₂.

Figure S6. The deconvoluted XPS Ce (3d) spectrum for Er/Ce₂O₃ NPs.

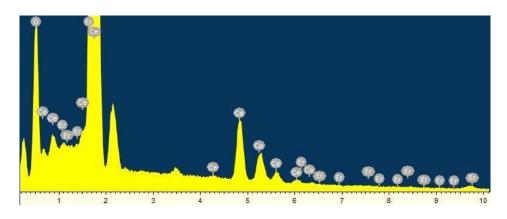


Figure S1. The EDS image of Er/Ce₂O₃ nanoparticles

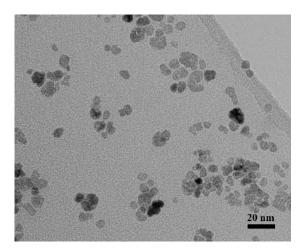


Figure S2. The TEM image of Er/Ce₂O₃ nanoparticles

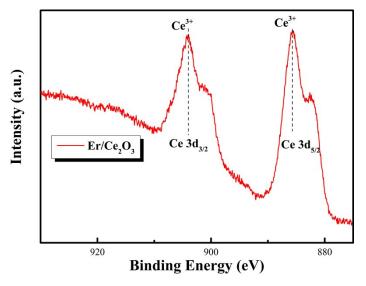


Figure S3. The XPS result for pure Ce₂O₃: Er NPs without hydrogen peroxide

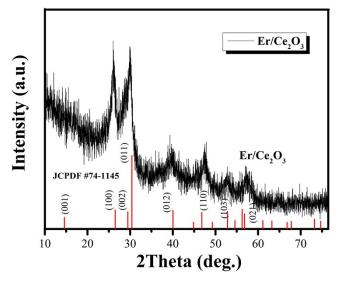


Figure S4. The x-ray diffraction of pure Er/Ce₂O₃ NPs

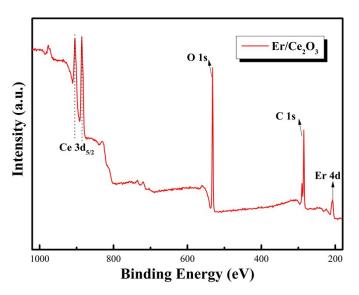


Figure S5. The XPS of Er/Ce₂O₃ without H₂O₂

The deconvolute the XPS data to find the concentration Ce^{3+} and Ce^{4+} oxidation state was measured in Figure S6. In order to validate the changes in the nanoceria surface valence chemistry, x-ray photoelectron spectroscopic (XPS) (PE-PHI5400) study was carried out on all the particles at optimized conditions. Figure 1 showed the deconvoluted XPS Ce (3d) spectrum for Er/Ce_2O_3 NPs. In the Figure 1, v_0 , v', u_0 , and u' peaks were attributed to Ce^{3+} , while u and u' were the characteristic peaks of Ce^{4+} ions. The peak positions for all the samples were listed in Table S1.

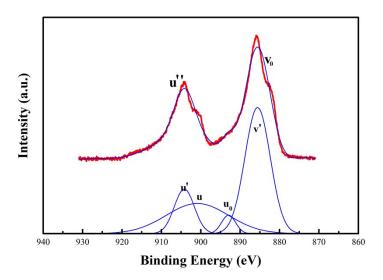


Figure S6. The deconvoluted XPS Ce (3d) spectrum for $Er/Ce_2O_3\ NPs.$

Table S1. XPS binding energies of individual peaks of the Ce (3d) spectrum

	v_0	v	u_0	и	u	u ^{''}
Ce $(3d_{5/2})$	885.58	920.54				
Ce $(3d_{3/2})$			892.94	900.85	904.17	877.56

A semiquantitative analysis of the integrated peak area provided the concentration of Ce^{3+} ions in the synthesized nanoparticles. It can be calculated as equation S1. where Ai was the integrated area of peak "i."

$$[Ce^{3+}] = \frac{A_{u_0} + A_{u} + A_{v_0} + A_{v}}{A_{u_0} + A_{u} + A_{u} + A_{v} + A_{v_0} + A_{v}}$$
(S1)

The Ce^{3+} concentration in Er/Ce_2O_3 with H_2O_2 for 24 h was found to be 67 atom%, while that Ce^{4+} concentration was 33 atom%.