Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Protein-mediated wool-ball-like copper sulfide as multifunctional nanozyme

for dual fluorescence "turn-on" sensors of cysteine and silver ion

Yan Liu,* Haijia Jin, Wenting Zou, Rong Guo*

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.

R. China

*To whom correspondence should be addressed. Tel : +86-514-87971802; Fax : +86-514-87311374; Email:yanliu@yzu.edu.cn, guorong@yzu.edu.cn.

Fig. S1. SEM images of copper sulfide prepared in the presence of different biomolecules: aspartic acid (A), histidine (B), hydrolyzed casein (C) and no additive (D).

Fig. S2. The absorbance at 625nm of the TMB and H_2O_2 mixture in different systems.

Fig. S3. Effects of (A) temperature, (B) pH, (C) TMB concentration, and (D) H₂O₂ concentration on the peroxidase-like activity of WBLCS.

Fig. S4. Correlation of initial reaction velocity with different concentrations of (A) TMB and (C) H₂O₂. (B, D) The double-reciprocal plots of (A) and (C), respectively.

Fig. S5. Fluorescence spectra of different systems (a: WBLCS + TA, b: WBLCS + TA + H_2O_2). ([TA]=0.25 mM, [H_2O_2]=1 mM)

Fig. S6. Effect of (A) temperature, (B) pH, (C) TA concentration and (D) reaction time on the cascade performance of WBLCS.

Fig. S7. Fluorescence intensity of WBLCS-TA system in the presence of different biomolecules. (a) proline, (b) aspartic acid, (c) GSH, (d) glucose, (e) fructose, (f) lactose, (g) histidine, (h) arginine, (i) methionine, (j) tyrosine, (k) lysine, (l) cysteine ([Cys] = 0.1 mM, concentration of other substances being 1.25 mM).

Fig. S8. The fluorescence spectra of different systems, a: WBLCS + TA + Cys, b: WBLCS + TA + Cys + Ag⁺, c: TA + Cys + Ag⁺. ([TA]=0.025 mM, [Cys]=0.5 mM)

Fig. S9. Effect of (A) temperature, (B) pH, (C) TA concentration and (D) Cys concentration on the fluorescence intensity change of WBLCS-TA -Cys systems with and without silver ions.

Fig. S10. Fluorescence intensity of WBLCS-TA-Cys system in the presence of different metal ions ([Ag⁺]=0.075 mM, other ion concentration being 0.5 mM)

Enzyme	$K_{\rm m}$ (mM)		$V_{\rm max}$ (10 ⁻⁸ M s ⁻¹)		D
	TMB	H_2O_2	TMB	H_2O_2	Kelelelice
HRP	0.434	3.7	10.0	8.71	1
Bare CuS	0.11	101.8	0.038	0.043	2
CuS-Asp0.05	0.09	103.2	33.1	38.2	2
Hollow-CuS NCs	1.62	0.94	16.64	2.55	3
CuS-BSA-Cu ₃ (PO ₄) ₂	0.55	0.29	8.2	8.31	4
50Co/CuS-MMT	0.077	3.422	10.373	7.054	5
WBLCS	0.435	0.04	68.5	35.6	This work

Table S1. Comparison of the apparent Michaelis-Menton constant (K_m) and maximum reaction rate (V_{max}) of WBLCS.

Method	Linear range (µM)	Detection limit	Sensing systems	Mode	Reference
Colorimetric	25-300	11.26 µM	CuMnO ₂ -TMB-H ₂ O ₂	Turn off	6
Colorimetric	1-20	150 nM	FeCoNPs-TMB-H ₂ O ₂	Turn off	7
Colorimetric	1-10	80 nM	MoS ₂ -PPy-Pd -TMB-H ₂ O ₂	Turn off	8
Colorimetric	0.05-10	24.2 nM	$Mo^{6+}-Co_3O_4-TMB-H_2O_2$	Turn off	9
Fluorescence	0.63-100	6.6 nM	CuONPs-TA	Turn on	10
Fluorescence	0.03-125	1.0 nM	WBLCS-TA	Turn on	This work

Table S2. Comparison of different methods for cysteine detection based on nanozymes.

Added (µM)	Found (µM)	Recovery (%)	RSD (%, n=3)
0.00	0.23		3.1
0.50	0.75	104.0	2.2
3.00	3.18	98.3	1.4
10.00	10.35	101.2	3.3

Table S3. Determination of cysteine in serum sample using the proposed method.

Method	Linear range	Detection limit (nM)	Sensing systems	Mode	Reference
Colorimetric	30-300 nM	4.7	His–PdNPs-TMB-H ₂ O ₂	Turn off	11
Colorimetric	0.5 -10 μM	204	BSA@AuNCs-TMB-H ₂ O ₂	Turn off	12
Colorimetric	0.1-8.0 μΜ	10	Casein-Au- TMB-H ₂ O ₂	Turn off	13
Colorimetric	2-5 nM	1.43	Citrate-ZIF-8/GO-TMB-H ₂ O ₂	Turn on	14
Fluorescence	0.1 -4 μM	50	CDs/AuNP	blue-red-blue	15
Fluorescence	5 nM-0.05 µM	5	Si-CDs@DA	Turn off	16
Fluorescence	0. 1 nM-1 μM	0.037	CuONPs-TA-GSH	Turn off	17
Fluorescence	50 nM-75 µM	5	WBLCS-TA-Cys	Turn on	This work

Table S4. Comparison of different methods for $\mbox{Ag}^{\scriptscriptstyle +}$ detection.

Sample	Added (µM)	Found (µM)	Recovery (%)	RSD (%, n=3)
	1.0	0.98	98.4	2.0
Serum	2.0	1.98	99.2	1.0
	3.0	3.03	100.9	1.2
Lake water	1.0	0.98	97.7	2.8
	2.0	1.97	98.5	2.1
	3.0	3.09	103.2	3.9

Table S5. Detection of Ag^+ in real samples using the proposed method.

References

1. L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang and S. Perrett, *Nat. Nanotechnol.*, 2007, 2, 577-583.

2. X. H. Niu, X. H. Xu, X. Li, J. M. Pan, F. X. Qiu, H. L. Zhao and M. B. Lan, *Chem. Commun.*, 2018, 54, 13443-13446.

3. J. L. Zhu, X. Peng, W. Nie, Y. J. Wang, J. W Gao, W. Wen, J. N. Selvaraj, X. H. Zhang and S. F. Wang, *Biosens. Bioelectron.*, 2019, 141, 111450.

4. A. Swaidan, A. Addad, J. F. Tahon, A. Barras, J. Toufaily, T. Hamieh, S. Szunerits and R. Boukherroub, *Anal. Chim. Acta*, 2020, 1109, 78-89.

5. K. L. Wu, W. K. Li, S. Zhang, W. Chen and X. X. Zhu, Colloids Surf., A, 2020, 602, 125063.

6. Y. Chen, T. Chen, X. Wu and G. Yang, Sens. Actuators, B, 2019. 279, 374-384.

7. Z. Z. Yang, Y. Zhu, G.D. Nie, M. Li, C. Wang and X. Lu, Dalton. T., 2017, 46, 8942-8949.

8. M. Chi, Y. Zhu, L. Jing, C. Wang and X. Lu, Anal. Chim. Acta, 2018, 1035, 146-153.

9. M. Gao, X. Lu, S. Chen, D. Tian, Y. Zhu and C. Wang, ACS Appl. Nano Mater., 2018, 1, 4703-4715.

10. A. L. Hua, H. H. Deng, X. Q. ,Zheng, Y. Y. Wu, X. L. Lin, A. L. Liu, X. H. Xia, H. P. Peng, W. Chen and G. L. Hong, *Biosens. Bioelectron.*, 2017, 97, 21-25.

11. W. C. Zhang, X. H. Niu, S. C. Meng, X. Li, Y. F. He, J. M. Pan, F. X. Qiu, H. L. Zhao and M. B. Lan, *Sens. Actuators, B*, 2018, 273, 400-407.

12. Y. Q. Chang, Z. Zhang, J. H. Hao, W. S. Yang and J. L. Tang, Sens. Actuators, B, 2016, 232, 692-697.

13. Y. Liu, Y. P. Xiang, D. Ding and R. Guo, RSC Adv., 2016, 6, 112435-112444.

14. C. R. Li, J. Hai, L. Fan, S. L. Li, B. D. Wang and Z. Y. Yang, Sens. Actuators, B, 2019, 284, 213-219.

15. F. Y. Wang, Y. X. Lu, Y. Chen, J.W. Sun and Y. Y. Liu, ACS Sustainable Chem. Eng., 2018, 6, 3706-3713.

16. Y. L. Jiang, Z. Y. Wang and Z. H. Dai, ACS Applied Materials & Interfaces, 2016, 8, 3644-3650.

17. L.Y. He, Y.X. Lu, X.Y. Gao, P.S. Song, Z.X. Huang, S. Liu and Y.Y. Liu, *ACS Sustainable Chem. Eng.*, 2018, 6, 12132-12139.