Supporting Information

Rational construction AIEgens with wide color tunability and their

specific lipid droplets imaging applications

Fei Zhang, ‡^a Zhe Li, ‡^b Yaoming Liu, ^c Binsheng Yang, ^a Hui Qiao, ^a Jie Chai, ^d Guangming Wen^d and Bin Liu^{*a}

^aInstitute of Molecular Science, Engineering Research Center for Sewage Treatment of Shanxi Province, Shanxi University, Taiyuan, China, 030006. Email: liubin@sxu.edu.cn. ^bThe Second People's Hospital of Shanxi Province, Taiyuan, China. ^cScientific Instrument Center of Shanxi University, Taiyuan, China. ^dDepartment of Chemistry, Jinzhong University, Taiyuan, 030619, China.

Scheme S1 Synthetic routes to AIEgens with widely tunable emissions.

Fig. S1. ¹H NMR spectrum of A1.

Fig. S2 ¹³C NMR spectrum of A1.

Fig. S3 ESI-MS spectrum of A1.

Fig. S5 ¹³C NMR spectrum of A2.

Fig. S6 ESI-MS spectrum of A2.

Fig. 7 ¹H NMR spectrum of A3.

Fig. S8 ¹³C NMR spectrum of A3.

Fig. S9 ESI-MS spectrum of A3.

Fig. 10 ¹H NMR spectrum of A4.

Fig. S11 ¹³C NMR spectrum of A4.

Fig. 13 ¹H NMR spectrum of B1.

Fig. S15 ESI-MS spectrum of B1.

Fig. S18 ESI-MS spectrum of B2.

Fig. S20¹³C NMR spectrum of B3.

Fig. S21 ESI-MS spectrum of B3.

Fig. S22 (a) PL spectra of **A1** in DMSO solution with different water fractions (f_w). (b) Plots of the relative emission intensity (I/I₀) versus f_w in DMSO/water mixture of **A1**. Insert: fluorescent photographs of **A1** in DMSO solution with different water fractions.

Fig. S23 (a) PL spectra of **A2** in DMSO solution with different water fractions (f_w). (b) Plots of the relative emission intensity (I/I₀) versus f_w in DMSO/water mixture of **A2**. Insert: fluorescent photographs of **A2** in DMSO solution with different water fractions.

So state	
S1 state	

Fig. S24 Optimized structures of A1 (left) and A2 (right) in the S_0 and S_1 states.

Fig. S25 (a) PL spectra of **A3** in DMSO solution with different water fractions (f_w). (b) Plots of the relative emission intensity (I/I_0) versus f_w in DMSO/water mixture of **A3**. Insert: fluorescent photographs of **A3** in DMSO solution with different water fractions.

Fig. S26 (a) PL spectra of **A4** in DMSO solution with different water fractions (f_w). (b) Plots of the relative emission intensity (I/I₀) versus f_w in DMSO/water mixture of **A4**. Insert: fluorescent photographs of **A4** in DMSO solution with different water fractions.

Fig. S27 (a) PL spectra of **B1** in DMSO solution with different water fractions (f_w). (b) Plots of the relative emission intensity (I/I_0) versus f_w in DMSO/water mixture of **B1**. Insert: fluorescent photographs of **B1** in DMSO solution with different water fractions.

Fig. S28 (a) PL spectra of **B2** in DMSO solution with different water fractions (f_w). (b) Plots of the relative emission intensity (I/I_0) versus f_w in DMSO/water mixture of **B2**. Insert: fluorescent photographs of **B2** in DMSO solution with different water fractions.

Fig. S29 Co-localization imaging of PC 12 cells stained with **A2** and Nile Red. (a) Blue channel, (b) Red channel, (c) Merged images of panels (a) and (b). For **A2**, $\lambda_{ex} = 405$ nm, $\lambda_{em} = 420-480$ nm; For Nile Red, $\lambda_{ex} = 514$ nm, $\lambda_{em} = 580-650$ nm. Concentration: **A2** (1.0×10^{-6} M), Nile Red (1.0×10^{-6} M). Scale bar: 5 µm. Pearson's correlation coefficient: 0.94.

Fig. S30 Co-localization imaging of PC 12 cells stained with **A3** and Nile Red. (a) Green channel, (b) Red channel, (c) Merged images of panels (a) and (b). For **A3**, $\lambda_{ex} =$ 458 nm, $\lambda_{em} = 460-540$ nm; For Nile Red, $\lambda_{ex} = 514$ nm, $\lambda_{em} = 580-650$ nm. Concentration: **A3** (1.0×10⁻⁶ M), Nile Red (1.0×10⁻⁶ M). Scale bar: 5 µm. Pearson's correlation coefficient: 0.92.

Fig. S31 Co-localization imaging of PC 12 cells stained with **A4** and Nile Red. (a) Yellow channel, (b) Red channel, (c) Merged images of panels (a) and (b). For **A4**, λ_{ex} = 514 nm, λ_{em} = 520–570 nm; For Nile Red, λ_{ex} = 514 nm, λ_{em} = 590–650 nm. Concentration: **A4** (1.0×10⁻⁶ M), Nile Red (1.0×10⁻⁶ M). Scale bar: 5 µm. Pearson's correlation coefficient: 0.88.

Fig. S32 Co-localization imaging of PC 12 cells stained with B1 and BODIPY 493/503 Green. (a) Orange channel, (b) Green channel, (c) Merged images of panels (a) and (b). For B1, $\lambda_{ex} = 514$ nm, $\lambda_{em} = 540-620$ nm; For BODIPY 493/503 Green, $\lambda_{ex} = 488$ nm, $\lambda_{em} = 500-530$ nm. Concentration: B1 (1.0×10⁻⁶ M), BODIPY 493/503 Green (1.0×10⁻⁶ M). Scale bar: 5 µm. Pearson's correlation coefficient: 0.86.

Fig. S33 Co-localization imaging of PC 12 cells stained with **B2** and BODIPY 493/503 Green. (a) Red channel, (b) Green channel, (c) Merged images of panels (a) and (b). For **B2**, $\lambda_{ex} = 514$ nm, $\lambda_{em} = 590-680$ nm; For BODIPY 493/503 Green, $\lambda_{ex} = 488$ nm, $\lambda_{em} = 500-550$ nm. Concentration: **B2** (1.0×10⁻⁶ M), BODIPY 493/503 Green (1.0×10⁻⁶ M). Scale bar: 5 µm. Pearson's correlation coefficient: 0.91.

Fig. S34 The cytotoxicity on Hela cells in different concentration of A2.

Fig. S35 The cytotoxicity on Hela cells in different concentration of A3.

Fig. S36 The cytotoxicity on Hela cells in different concentration of A4.

Fig. S37 The cytotoxicity on Hela cells in different concentration of B1.

Fig. S38 The cytotoxicity on Hela cells in different concentration of B2.

Fig. S39 (a) Emission spectra of B3 in the mixed solvent of methanol and trioctanoin at different trioctanoin fractions (f_T). (b) Plot of relative emission intensity (I/I₀) versus f_T of B3.

Fig. S40 (a) Emission spectra of **B3** in the mixed solvent of methanol and glycerol at different glycerol fractions (f_G). (b) Plot of relative emission intensity (I/I_0) versus f_G of **B3**.

Fig. S41 (a) PL spectra of **B3** in various solvents. Concentration: 1 μ M; excitation wavelength: 495 nm. (b) Photographs: showing the solution under 365 nm UV light.

Fig. S42 Emission spectra of **B3** in the serum of hyperlipidemia (1–6) and normal people (1–6).