Electronic Supplementary Information (ESI)⁺

Highly Luminescent Biocompatible CsPbBr₃@SiO₂ Core–Shell Nanoprobes for Bioimaging and Drug Delivery

Pawan Kumar^a, Madhumita Patel^b, Chanho Park^a, Hyowon Han^a, Beomjin Jeong^a, Hansol Kang^a, Rajkumar Patel^c, Won-Gun Koh^{b*} and Cheolmin Park^{a*}

^a Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea, E-mail: cmpark@yonsei.ac.kr

^bDepartment of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea. E-mail: wongun@yonsei.ac.kr

^cEnergy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea 21938.

Fig. S1 XRD Pattern of CsPbBr₃@SiO₂ core-shell PNCs.

Fig. S2 TEM images of CsPbBr₃ PNCs (a) and CsPbBr₃@SiO₂ core-shell PNCs (b-e) at various reaction times 1, 2, 3, and 24 h, respectively

Fig. S3 The EDS mapping of CsPbBr₃@SiO₂ core-shell PNCs.

Fig. S4 X-ray photoelectron spectra of (a) Pb4f, (b) Br3d, and (c) O1s.

Fig. S5 Normalized photoluminescence emission spectra of CsPbBr₃@SiO₂ core-shell PNCs synthesized at different reaction such as 1, 2, 3, 6, 12, 24 hours.

Fig. S6 The FTIR spectrum of CsPbBr₃@SiO₂-24H core-shell PNCs.

Fig. S7 (a & b) The photograph of $CsPbBr_3@SiO_2_24H$ core-shell PNCs dispersed in water in UV light after 2 and 24 hours, respectively. The scale bars (a) and (b) are 1 cm.

Fig. S8 The PL emission spectra of CsPbBr₃@SiO₂_24H core-shell PNCs dispersed in water after dispersion and 24 hours, respectively.

2D View

3D Side View

Fig. S9 Z-stack image acquired by confocal microscopy, of HeLa cells. Cell nuclei (DAPI) are shown in blue and nanocrystals in green. Scale bar: 10 μm.

Fig. S10 (a) and (b) the SEM and high resolution images of CsPbBr₃@SiO₂_24H nanocrystals.

Fig. S11 Adsorption-desorption isotherm of CsPbBr₃@SiO₂_24H core shell PNCs.

Fig. S12 Zeta (ζ)-potential of CsPbBr₃@SiO₂_24H core shell PNCs.

Sample	BET surface area (m²g)	Pore diameter (nm)	Pore volume (cc/g)
CsPbBr ₃ @SiO ₂	14.259	3.043	0.094

Tab. S1 Parameters obtained for of CsPbBr₃@SiO₂_24H core shell PNCs from BET.

Matrix	Structure	Emission	Excitation	Bio-medical	Ref.
		(nm)	(nm)	application	
CdS:Cu	Nanoparticle	565	405	bio-imaging	1
NaYF₄:Yb,Tm@SiO₂-PEG	Core-shell	365	980 nm	Drug delivery	2
Carbon dots	Quantum dots	410 to 504	280 to 460	bio-imaging	3
Gold Nanorods/Polypyrrole/m-SiO ₂ (GNRs/ PPy/m-SiO ₂)	Core-shell			Drug delivery	4
Fe3O4@SiO ₂	Mesoporous Spheres			Drug delivery	5
CsPbBr ₃ /CsPb2Br ₅	Core-shell	520	365	bio-imaging	6
CsPbBr ₃ @PMMA	Nanospheres	510	365	bio-imaging	7
MoS ₂ /WS ₂	Quantum Dots	463	390	bio-imaging	8
MoS ₂	Quantum Dots	414	243	bio-imaging	9
CsPbX ₃ @MHSs	Micelles	514	365	bio-imaging	10
C-Dots	Quantum Dots	05 to 565	600 to 800	bio-imaging	11
(CsPbBr ₃ @SiO ₂)	Core-shell	514	374	bio-imaging &	
Our Case				Drug delivery	

Tab. S2 Characteristics of PNCs used for bio-medical application.

References

- 1. T. Xuan, S. Wang, X. Wang, J. Liu, J. Chen, H. Li, L. Pan and Z. Sun, Chem. Commun. (Camb, 2013, 49, 9045-9047.
- P. Alonso-Cristobal, O. Oton-Fernandez, D. Mendez-Gonzalez, J. F. Díaz, E. Lopez-Cabarcos, I. Barasoain and J. Rubio-Retama, ACS Appl. Mater. Interfaces, 2015, 7, 14992-14999.
- 3. C. Yu, T. Xuan, Y. Chen, Z. Zhao, Z. Sun and H. Li, J. Mater. Chem. C, 2015, 3, 9514-9518.
- 4. J. Wang, J. Han, C. Zhu, N. Han, J. Xi, L. Fan and R. Guo, Langmuir, 2018, 34, 14661-14669.
- 5. Y. Zhu, T. Ikoma, N. Hanagata and S. Kaskel, *Small*, 2010, **6**, 471-478.
- 6. S. Lou, Z. Zhou, T. Xuan, H. Li, J. Jiao, H. Zhang, R. Gautier and J. Wang, ACS Appl. Mater. Interfaces, 2019, **11**, 24241-24246.
- 7. Y. Wang, L. Varadi, A. Trinchi, J. Shen, Y. Zhu, G. Wei and C. Li, Small, 2018, 14, e1803156.
- 8. S. Xu, D. Li and P. Wu, Adv. Funct. Mater., 2015, 25, 1127-1136.
- 9. W. Dai, H. Dong, B. Fugetsu, Y. Cao, H. Lu, X. Ma and X. Zhang, *Small*, 2015, **11**, 4158-4164.
- 10. H. Zhang, X. Wang, Q. Liao, Z. Xu, H. Li, L. Zheng and H. Fu, Adv. Funct. Mater., 2017, 27, 1604382.
- 11. B. Kong, A. Zhu, C. Ding, X. Zhao, B. Li and Y. Tian, Adv. Mater., 2012, 24, 5844-5848.