Supplementary information

New insights on the blue intrinsic fluorescence of oxidized PAMAM dendrimers considering their use as bionanomaterials Cláudia S. Camacho[°], M. Urgellés[°], H. Tomás[°], F. Lahoz[°], J. Rodrigues^{°*}

^aCQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.

^bDepartamento de Física, IUdEA, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain

*Corresponding Author: João Rodrigues (e-mail: joaor@uma.pt, tel.: +351-291705108, fax: +351-291705149).

Contents

Figure S1: Standard curve for hemoglobin.

Figure S2: ¹H-NMR spectra of a) G3.NH₂ PAMAM dendrimer and b) APS-treated G3 in D₂O.

Figure S3: ¹H-NMR spectra of a) G4.NH₂ PAMAM dendrimer and b) APS-treated G4 in D₂O.

Figure S4: ¹H-NMR spectra of a) G5.NH₂ PAMAM dendrimer and b) APS-treated G5 in D₂O.

Table S1: Chemical structure of the APS-treated/pristine PAMAM dendrimers and the correspondent chemical shifts (in ppm) obtained by ¹H-NMR.

Figure S5: FT-IR spectra of generations 3, 4, and 5 of the APS-treated/pristine PAMAM dendrimers (recorded in KBr pellets).

Figure S6: APS-treated PAMAM dendrimers under UV irradiation at 366nm with a concentration of a) $1x10^{-6}$ M, b) $1x10^{-5}$ M, and c) 4.3mg/600µl (APS-treated G3: $1x10^{-3}$ M, APS-treated G4: $5x10^{-4}$ M and APS-treated G5: $2.5x10^{-4}$ M) in ultrapure water.

Figure S7: Enlarged excitation spectrum of generation 3 APS-treated dendrimers (λ em= 450nm) showing a band \approx 250nm.

Figure S1: Standard curve for hemoglobin using several concentrations: 0.2; 0.37; 0.54; 0.71; 0.88; 1.05; 1.22 and 1.39mg/ml. The absorbance was measured at 550nm.

Figure S2: ¹H-NMR spectra of a) G3.NH₂ PAMAM dendrimer and b) APS-treated G3 in D₂O.

Figure S3: ¹H-NMR spectra of a) G4.NH₂ PAMAM dendrimer and b) APS-treated G4 in D₂O.

Figure S4: ¹H-NMR spectra of a) G5.NH₂ PAMAM dendrimer and b) APS-treated G5 in D₂O.

Table S1: Chemical structure of the APS-treated/pristine PAMAM dendrimers and the corresponding chemical shifts (in ppm) obtained by ¹H-NMR (in D_2O).

Chemical structure	G3.NH ₂	APS-treated G3.NH ₂	G4.NH ₂	APS-treated G4.NH ₂	G5.NH ₂	APS-treated G5.NH ₂
-NCH ₂ C H ₂ CONH-	2.47	2.85	2.43	2.59	2.51	2.57
-СОNНСН2С Н 2N-	2.67	3.22	2.63	2.87	2.71	2.80
-CONHCH ₂ C H ₂ NH ₂	2.76	3.40	2.73	3.20	2.84	3.21
-NC H 2CH2CONH-	2.87	3.30	2.83	3.04	2.90	2.97
-CONHC H ₂ CH ₂ NH ₂	3.28	3.69	3.25	3.56	3.36*	3.58
-CONHC H ₂ CH ₂ N-	3.36	3.57	3.28	3.40	3.36*	3.39

*Signals are overlapping.

Figure S5-A: FT-IR spectra of generations 3, 4, and 5 of the pristine/APS-treated PAMAM dendrimers (recorded in KBr pellets) – full scale.

Figure S5-B: FT-IR spectra of generations 3, 4, and 5 of the pristine/APS-treated PAMAM dendrimers (recorded in KBr pellets) – enlarged scale.

Figure S5-C: FT-IR spectra of generations 3, 4, and 5 of the pristine/APS-treated PAMAM dendrimers (recorded in KBr pellets) – enlarged scale (comparison among spectra).

Figure S6: APS-treated PAMAM dendrimers under UV irradiation at 366nm with a concentration of a) 1×10^{-6} M, b) 1×10^{-5} M, and c) 4.3 mg/600µl (APS-treated G3: 1×10^{-3} M, APS-treated G4: 5×10^{-4} M and APS-treated G5: 2.5×10^{-4} M) in ultrapure water.

Figure S7: Enlarged excitation spectrum of generation 3 APS-treated dendrimers (λ_{em} = 450nm) showing a band ca. 250nm. The spectrum was recorded at a concentration of 1x 10⁻⁵M in ultrapure water. The sharp band at 225nm is due to second-order scattering.