Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information**

## A Porous Self-healing Hydrogel with Island-bridge Structure for Strain and Pressure Sensor

Yue Zhang<sup>1,2</sup>, Erhui Ren<sup>1,2</sup>, Ang Li<sup>1,2</sup>, Ce Cui<sup>1,2</sup>, Ronghui Guo<sup>1,2\*</sup>, Hong Tang<sup>1,2</sup>, Hongyan Xiao<sup>1,2</sup>, Mi Zhou<sup>1,2</sup>, Wenfeng Qin<sup>3</sup>, Xinyuan Wang<sup>3</sup>, Li Liu<sup>4</sup>

1. College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China

2. Ministry Education Key Lab Leather chemistry & Engineering, Sichuan University, Chengdu, Sichuan, China

3. Aviation Engineering Institute, Civil Aviation Flight University of China, Guanghan, China

4. College of Chemistry, Sichuan University, Chengdu, China

\*Corresponding Author: Ronghui Guo Tel: (86) 28-8540 5420, E-mail

address:ronghuiguo214@126.com (R. H. Guo)



Figure S1. SEM micrographics of PVA/CNT/graphene hydrogel at magnifications of  $1000 \times$ .



Figure S2. The SEM image of the region of the integrated location of PVA/CNTs and PVA/graphene at magnifications of 100×. The left and right sides respectively show the magnified SEM images at the red circle.



Figure S3. The enlarged SEM image of PVA/CNTs hydrogel at magnifications of  $40000 \times$ .



Figure S4. The enlarged SEM image of PVA/graphene hydrogel at magnifications of  $40000 \times$ .



Figure S5. Relative resistance variations of PVA/CNTs/graphene hydrogel with the thickness of 2cm as function of time under different pressures (1.2, 2, 2.8, 4.5and 10kPa).

Table S1. Initial resistance of different hydrogels based on conductive nanocomposite.

| System                    | Resistance (Ω) | Reference |
|---------------------------|----------------|-----------|
| PVA/polydopamine hydrogel | 87             | 22        |
| PVA/polydopamine/reduced  | 106            | 3         |

graphene oxide hydrogel

| MXene-base                    | ed hydrogel                 | 2200    | 11        |
|-------------------------------|-----------------------------|---------|-----------|
| Polyacrylic                   | acid/reduced                | 5200    | 30        |
| graphene oxide hy             | /drogel.                    |         |           |
| Single-walled                 | CNT hydrogel                | 300     | 16        |
| Polyacrylic acid-p            | ooly (-                     | 1000    | 28        |
| glutamic)acid-Fe <sup>3</sup> | +/glycerol+H <sub>2</sub> O |         |           |
| hydrogel                      |                             |         |           |
| PVA/pol                       | yacrylic                    | 7.5*106 | 7         |
| acid/CNT/Fe <sup>3+</sup> /   | ethylene glycol             |         |           |
| hydr                          | ogel                        |         |           |
| PVA//CNTs/gra                 | phene hydrogel              | 230     | This work |

Table S2. Performance evaluation of PVA/CNT/graphene hydrogel as strain and pressure sensors

| PVA/CNT/graphene hydrogel | Strain sensors | Pressure sensors       |
|---------------------------|----------------|------------------------|
|                           |                |                        |
| Minimum monitoring limit  | 1%             | 1kPa                   |
| Maximum monitoring limit  | 600%           | 10kPa                  |
| Sensitivity               | 152.6          | 0.127kPa <sup>-1</sup> |