Supplementary information

Targeted delivery and controlled release of doxorubicin to cancer cells by smart ATP-responsive Y-shaped DNA structure-capped mesoporous silica nanoparticles

Elnaz Bagheri^{a,b}, Mona Alibolandi^{a,b}, Khalil Abnous^c, Seyed Mohammad Taghdisi^{d,*}, Mohammad

Ramezani^{a,b,e,**}

^a Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

^b Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

^c Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

^d Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

^eNanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Corresponding Authors:

Prof. Mohammad Ramezani, Prof. of Pharmaceutical Biotechnology, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel/Fax: +98 51 37112470, E-mail: ramezanim@mums.ac.ir

Dr. Seyed Mohammad Taghdisi, Associate Prof. of Pharmaceutical Biotechnology, Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel/Fax: +98 51 31801203, E-mail: taghdisihm@mums.ac.ir

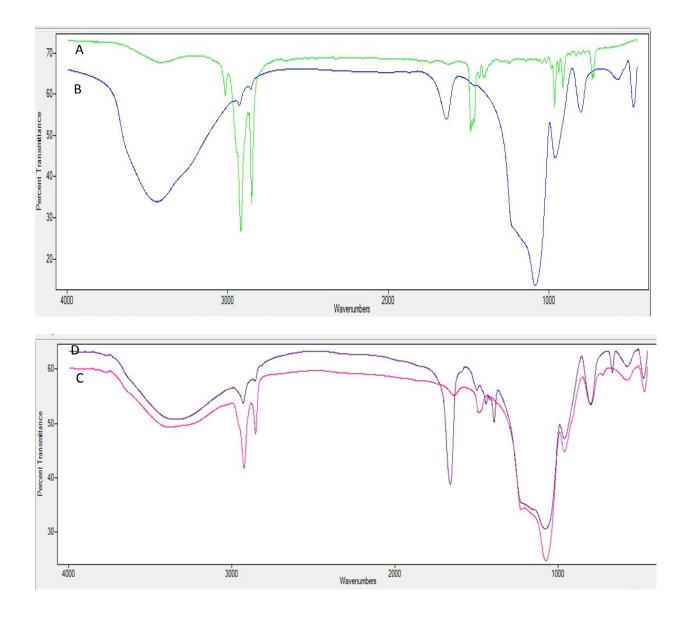


Figure S1. FTIR spectra of (A) CTAB (B) MSNs (C) MSNs-NH $_2$ and (D) MSNs-COOH.

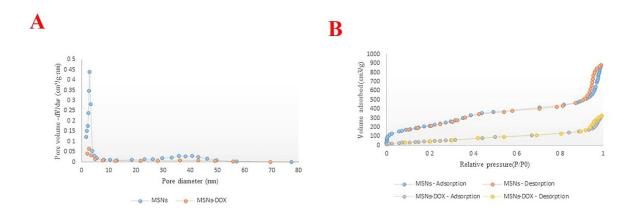


Figure S2. Nitrogen adsorption-desorption isotherms and pore size distribution of MSNs.

Sample	BET	BET	BJH
	surface area (m²/g)	pore volume (cm³/g)	pore diameter (nm)
MSN	$837 \text{ m}^2/\text{g} \pm 7 \text{ m}^2/\text{g}$	1.09	2.9
DOX@ MSN	7145 m²/g	0.88	

Table S1. Data representation for Nitrogen adsorption-desorption test and pore size distribution of the

synthesized MSN and prepare DOX@MSN

Sample	Size (nm)	PDI	Zeta potential [mV]
MSNs	115.3±5	0.204±.023	-7.8±0.7
MSNs-NH ₂	121±4.5	0.27±.036	+16.5±0.7
MSNs-COOH	145±6	0.456±.012	-58.1±0.4

Table S2. Dynamic light scattering measurements of the MSNs, MSNs-NH₂ and MSNs-COOH.

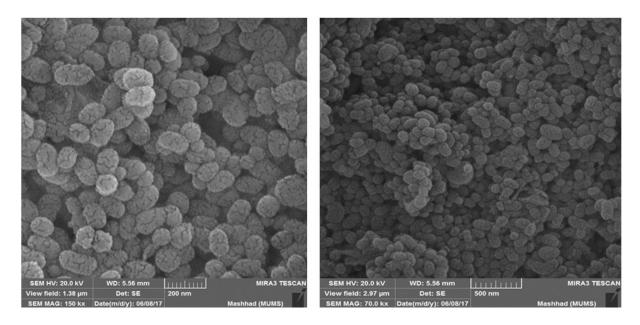


Figure S3. SEM images of MSNs at different resolutions.

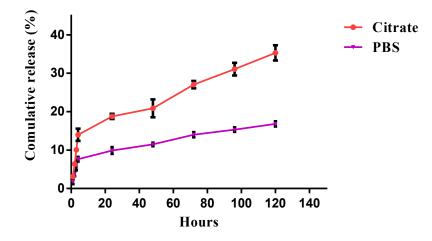


Figure S4. Release profile of DOX from DOX@MSNs in citrate buffer (pH 5.4) and PBS (pH

7.4).

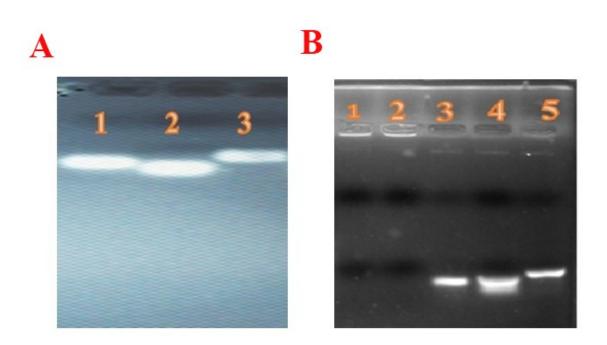


Figure S5. Gel retardation assay. (A) Formation of ATP1/ATP2 aptamers conjugation. Lane 1:ATP1 aptamer, lane 2: ATP2 aptamer and lane 3: ATP1 and ATP2 aptamer conjugate; (B) Attachment of aptamers to the surface of MSN. Lane 1: Attachment of ATP aptamers to DOX@MSNs-MUC1 (formation of DOX@MSNs-Apts), lane 2: attachment of MUC1 aptamer to MSNs (formation of DOX@MSNs-MUC1), lane 3: ATP1 aptamer, lane 4: ATP2 aptamer and lane 5: MUC1 aptamer