Supporting Information:

Human metabolites-derived alkylsuccinate/dilinoleate copolymers: From synthesis to application

Alessandro Jäger,^{a,*} Ricardo K. Donato,^{a,*} Magdalena Perchacz,^{a,b} Katarzyna Z. Donato,^a Zdeněk Starý,^a Rafał Konefał,^a Magdalena Serkis-Rodzeń,^a Maria G. Raucci,^c Alexandre M. Fuentefria,^d Eliézer Jäger^{a*}

^a Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic

^b Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland

^cInstitute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostrad'Oltremare Pad.20, Viale Kennedy 54, Naples, Italy ^dLaboratory of Applied Mycology, Department of Analysis, Faculty of Pharmacy,

Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

*Corresponding Authors:

Alessandro Jäger, <u>ajager@imc.cas.cz</u>

Ricardo K. Donato, donato@imc.cas.cz

Eliézer Jäger, jager@imc.cas.cz

Figure S1. SEC chromatograms in chloroform of synthesized polyesters.

NMR spectra of the homopolymers

¹H NMR spectrum of PES (Fig. S1a, left) shows the signals from the succinic acid methylene (B) protons at $\delta = 2.60 - 2.67$ ppm and from the ethylene glycol methylene (A) at $\delta = 4.20$ -4.35 ppm. ¹³C NMR spectrum of PES (Fig. S1a, right) shows the signals from the succinic acid methylene group (B) at $\delta = 29.2$ ppm and from the carbonyl group (C) at $\delta = 175.2$ ppm, while carbon signals from the ethylene glycol repeating unit appear at $\delta = 63.2$ ppm (A). ¹H NMR spectrum of PPS (Fig. S1b, left) shows that the signal from the succinic acid methylene (**B**) protons is as a singlet at $\delta = 2.62$ ppm, while signals from the propanediol methylene (A triplet and C pentet) protons appear at $\delta = 4.12 - 4.20$ and 1.90 - 2.1 ppm, respectively. The ¹³C NMR spectrum of PPS (Fig. S1b, right) demonstrates the signals from the succinic acid methylene (B) groups at $\delta = 28.9$ ppm and from the carbonyl (D) group at $\delta = 172.5$ ppm, while signals from the propanediol carbon units appear at $\delta = 61.2$ ppm (A) and $\delta = 27.7$ ppm (C). ¹H NMR spectrum of PBS (Fig. S1c, left) shows two singlets at $\delta = 4.11$ ppm (A) and $\delta = 1.70$ ppm (B) belonging to the methylene protons of butanediol, while signals from the succinic acid protons appear as a singlet at 2.61 ppm (C). ¹³C NMR spectrum of PBS (Fig. S1c, right) shows the carbon signals from succinic acid methylene (C) group at $\delta = 29.4$ ppm and the carbonyl (D) group unit at $\delta = 172.7$ ppm. The carbon signals from butanediol unit appear at $\delta = 63.2$ ppm (A) and $\delta = 25.3$ ppm (B).

Figure S2. ¹H (left) and ¹³C (right) NMR of the poly(ethylene succinate) (a), poly(propylene succinate) (b), and poly(butylene succinate) (c) polyesters.

Figure S3. FTIR spectra of (a) PES, (b) PPS and (c) PBS homopolyesters (black lines) and (a) PES/EDL, (b) PPS/PDL and (c) PBS/BDL copolyesters (red lines).

Figure S4. AFM phase mode images of PES after melt-processing (a) and spin-coating (b); and PES-EDL after melt-processing (c) and spin-coating (d).

Figure S5. AFM phase mode images of PPS after melt-processing (a); and PPS-PDL after melt-processing (b) and spin-coating (c).

Figure S6. AFM surface topology images of PPS after melt-processing (a); PPS-PDL just after melt-processing (b) and one month later (c); and PPS-PDL after spin-coating (d).

Figure S7. AFM phase mode images of PBS after melt-processing (a) and spin-coating (b); and PBS-BDL after melt-processing (c) and spin-coating (d).

Figure S8. PCL's AFM surface topologies (a) and phase mode images (b) after melt-processing and surface topologies (c) and phase mode images (d) after spin-coating; and PLGA's surface topology (e) and phase images (f) after melt-processing, and phase images after spin-coating (g).

Figure S9. Normal human dermal fibroblast (NHDF) cells viability experiments in the presence of PPS/PDL (green squares), PES/EDL (blue squares), PBS/BDL (black squares) and the reference polymer PCL (magenta squares), after 48h of incubation.