**Supporting information for:** 

## Montmorilonite Nanosheets with Enhanced Photodynamic Performance for

## **Synergistic Bacterial Ablation**

Yufeng Pan#, Yuting Gao#, Jiayuan Hu, Guangyu Ye, Feng Zhou, Chunjie Yan\*

Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China

<sup>\*</sup> Corresponding author at: China University of Geosciences, Faculty of Materials Science and Chemistry, 430074, Wuhan, China. Tel.: +86 18971579917.

E-mail address: chjyan@cug.edu.cn (Chunjie Yan).

## **Preparation of Na-MMT**

The properties of MMT are closely related to the types of intercalation cations. The common type of MMT in nature is Ca-MMT. Generally, the pulping performance of Na-MMT is better than that of Ca-MMT. In this experiment, Na-MMT was synthesized from Ca-MMT through its cations exchange properties. Ethanol and water as mixed solvent, the volume ratio of ethanol and deionized water is 1:9, and the solid-liquid mass ratio of the prepared Ca-MMT suspension is 1: 19. Weighed 10 g of Ca-MMT, dispersed it into 190 ml of the above mixed solvent, and then added 5wt% anhydrous sodium carbonate (relative to the mass of Ca-MMT). The suspension was ball-milled for 3 h, and aged for 24 h. Then, the precipitate was obtained by centrifuging three times with water and ethanol, respectively. Finally, the precipitate was dried for 3 h in a blast drying oven at 105°C. Na-MMT powder was obtained.

## **Preparation of 2D-MMT nanosheets**

Weighed 1.5 g of Na-MMT and dispersed it in 100 ml deionized water, then conducted ultrasonic treatment for 30 min (under normal temperature), then transferred the sample to polytetrafluoroethylene beaker, put it in a refrigerator at -20°C for 5 h, then took the sample out of the refrigerator and put it into the freeze dryer to dry slowly (about 48 h), the collected solid powder was re-dispersed into deionized water, and then the above freeze-drying operations were repeated. The final collected solid powder is 2D-MMT nanosheets.



Figure S1 Crystal structure of MMT.



**Figure S2** XRD spectra of Na-MMT, Ca-MMT and quartz (standard PDF card 01-0649 for quartz).



Figure S3 FT-IR spectra of Na-MMT and 2D-MMT.



Figure S4 SEM images of 2D-MMT nanosheets at different magnifications.



Figure S5 Zeta potential of Na-MMT and 2D-MMT.



Control

Na-MMT

Na-MMT + light

**Figure S6** Antibacterial tests with E. coli strains upon various treatments. Control group was treated without Na-MMT or light irradiation. Na-MMT group was treated with Na-MMT (1 mg ml<sup>-1</sup> in PBS solution). Na-MMT + light group was treated with Na-MMT (1 mg ml<sup>-1</sup> in PBS solution) and white light illumination ( $\lambda = 400-800$  nm, P = 4 mW cm<sup>-2</sup>, t = 20 min). After the treatment, the bacteria solution was diluted and plated on the agar plate for another 18 h at 37°C.



**Figure S7** EPR spectra of ·OH generated by 2D-MMT under light ( $\lambda = 400-800$  nm) for 20 min and without light condition.

| Sample     | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | MgO  | CaO  | Na <sub>2</sub> O | K <sub>2</sub> O | MnO  | TiO<br>2 | P <sub>2</sub> O <sub>5</sub> |
|------------|------------------|--------------------------------|--------------------------------|------|------|-------------------|------------------|------|----------|-------------------------------|
|            | Si               | Al                             | Fe                             | Mg   | Ca   | Na                | K                | Mn   | Ti       | Р                             |
|            | (%)              | (%)                            | (%)                            | (%)  | (%)  | (%)               | (%)              | (%)  | (%)      | (%)                           |
| Ca-<br>MMT | 54.37            | 14.89                          | 3.43                           | 4.64 | 2.21 | 0.21              | 0.2              | 0.02 | 0.25     | 0.12                          |
| Na-<br>MMT | 51.52            | 14.34                          | 3.31                           | 4.51 | 1.72 | 2.22              | 0.17             | 0.02 | 0.23     | 0.1                           |
| 2D-<br>MMT | 55.17            | 15.34                          | 3.55                           | 4.83 | 1.87 | 2.28              | 0.17             | 0.02 | 0.25     | 0.1                           |

 Table S1 Contents information of major elements for Ca-MMT, Na-MMT and 2D-MMT were determined by XRF.

| Sample | Ba    | Sr    | Zr    | Loss on      |
|--------|-------|-------|-------|--------------|
|        | (ppm) | (ppm) | (ppm) | ignition (%) |
| Ca-MMT | 112.4 | 133.1 | 828.3 | 19.57        |
| Na-MMT | 145   | 116.5 | 793.4 | 21.78        |
| 2D-MMT | 156.2 | 128.6 | 866.2 | 16.30        |

**Table S2** Contents information of trace elements for Ca-MMT, Na-MMT and 2D-MMT nanosheets was determined by XRF.

| Sample | 20       | d <sub>001</sub> | FWHM     |  |
|--------|----------|------------------|----------|--|
| Sample | (degree) | (Å)              | (degree) |  |
| Na-MMT | 7.03     | 12.57            | 0.74     |  |
| 2D-MMT | 5.80     | 15.24            | 0.99     |  |

Table S3 Assignment of XRD reflections obtained for bactericides.

| nH | $\frac{1-5}{7}$ | Error bar         | 7 (2D-MMT) | Frror bar         |
|----|-----------------|-------------------|------------|-------------------|
|    |                 |                   |            |                   |
| 2  | -9.2            | -9.2±0.669        | -8.6       | -8.6±0.964        |
| 3  | -19.5           | -19.5±0.818       | -20.1      | -20.1±0.945       |
| 4  | -24.6           | -24.6±0.954       | -18.9      | $-18.9 \pm 0.208$ |
| 5  | -19.7           | -19.7±0.723       | -20.4      | $-20.4\pm0.702$   |
| 6  | -24.7           | -24.7±1.006       | -18.9      | -18.9±0.252       |
| 7  | -23.0           | $-23.0\pm0.404$   | -22.1      | -22.1±0.321       |
| 8  | -23.1           | $-23.1\pm0.500$   | -20.8      | $-20.8 \pm 0.473$ |
| 9  | -19.8           | $-19.8 \pm 0.702$ | -23.3      | -23.3±0.709       |
| 10 | -24.9           | $-24.9\pm0.400$   | -27.6      | -27.6±0.985       |
| 11 | -29.2           | -29.2±0.751       | -30.6      | -30.6±0.764       |
| 12 | -35.7           | $-35.7 \pm 4.102$ | -38.2      | $-38.2 \pm 3.604$ |
| 13 | -20.6           | $-20.6 \pm 1.058$ | -23.1      | -23.1±0.872       |
|    |                 |                   |            |                   |

**Table S4** Zeta potential value of Na-MMT and 2D-MMT nanosheets at pH = 2-13 (Error bars, mean  $\pm$  s.d. n = 3).

|               | 01 m 1 m 1 m 1 m 1 m        | •1), 1 (0 1011011 0110 22 1 |               |
|---------------|-----------------------------|-----------------------------|---------------|
| 0 1           | $\mathbf{S}_{\mathrm{BET}}$ | Pore volume                 | Pore diameter |
| Sample        | $(m^2 g^{-1})$              | $(cm^3 g^{-1})$             | (nm)          |
| Na-MMT (Ref.) | 29.00                       | 0.035                       | 5.13          |
| Na-MMT        | 86.78                       | 0.099                       | 4.59          |
| 2D-MMT        | 215.87                      | 0.167                       | 3.11          |
|               |                             |                             |               |

Table S5 BET details of the Na-MMT (Ref), Na-MMT and 2D-MMT nanosheets.

| Sample        | рН  |
|---------------|-----|
| Liquid medium | 7.0 |
| Ca-MMT        | 7.5 |
| Na-MMT        | 8.9 |
| 2D-MMT        | 9.1 |
|               |     |

**Table S6** PH values of liquid medium, Na-MMT and 2D-MMT suspension at room temperature (Taking the average of the three measurements).