Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supporting information

Magnetic mesoporous silica/ε-polylysine nanomotor-based removers of blood Pb²⁺

Zhiyong Liu,^{‡a} Tingting Xu,^{‡a, b} Meng Wang,^a Chun Mao^{*a} and Bo Chi ^{*c}

^a National and Local Joint Engineering Research Center of Biomedical Functional

Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

^b Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China

^c State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China

Adsorption kinetics tested in aqueous condition

For adsorption kinetics study, 10 mg of MMS/P NRs were added to 10 mL aqueous solutions with Pb²⁺ concentration of 100 ppm. The adsorption process was carried out in water bath device with a constant temperature of 37°C. The adsorbents were removed from the solution using a magnet at prescribed times (10 min, 30 min, 1 h, 2 h, 4 h, 8 h, 12 h, 16 h, 20 h, 24 h). The concentrations of the heavy metal ions were detected by ICP method.¹

Activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) test

The platelet poor plasma (PPP) was obtained by centrifugation. Then 20 mg mL⁻¹ of adsorbents were incubated in 1.5 mL PPP at 37°C for 1 h, followed by measuring the coagulation times including APTT, PT and TT with a Rayto-2204C Semi automated coagulometer (USA). All the tests were performed in triplicate.²

Complement activation

MMS/P NRs were incubated with PPP obtained by centrifugation from whole blood at 37°C for 20 min. Then the cleavage of complement component C3 was monitored by detecting the formation of its activation peptides, C3a and C3a des-Arg, using a commercial C3a Elisa kit (BD OptEIATM) with a microplate reader (Biotek Synergy2, USA) according to the manufacturer's instructions.³

Adsorption isotherms tested in aqueous condition

The adsorption isotherm study was carried out by exposing 10 mg of MMS/P NRs to 10 mL aqueous solutions with different initial ion concentrations ranging from 1 to 100 ppm for 24 h at 37°C, respectively. The adsorbents were also removed from the solution using a magnet. In order to determine the adsorbed amount of Pb²⁺, the

concentrations of Pb²⁺ in the solution were detected before and after adsorption by using the ICP method.⁴

The adsorption data were dealt with the pseudo-first-order, the pseudo-secondorder and the intraparticle diffusion models.⁵

The pseodo-first-order model was described as bellow:

$$\ln(q_e - q_t) = \ln q_e - k_1 t \tag{1}$$

the pseudo-second-order order model was shown as bellow:

$$\frac{\mathsf{t}}{\mathsf{q}_{\mathsf{t}}} = \frac{1}{\mathsf{k}_{\mathsf{z}} \mathsf{q}_{\mathsf{\theta}}^{2}} + \frac{\mathsf{t}}{\mathsf{q}_{\mathsf{\theta}}} \tag{2}$$

and the intraparticle diffusion was shown as bellow:

$$q_t = k_{diff} \sqrt{t} + c \tag{3}$$

where q_t and q_e (mmol g⁻¹) represented the amount of Pb²⁺ adsorbed on the adsorbents at time t (min) and equilibrium, respectively. k_1 , k_2 and k_{diff} were the rate constants for each kinetic model.

Both Langmuir and Freundlich adsorption isotherms were obtained under 25°C.⁶ The Langmuir adsorption isotherms was described as bellow:

$$\frac{C_{\theta}}{q_{\theta}} = \frac{C_{\theta}}{q_{max}} + \frac{1}{K_{L}q_{max}}$$
(1)

and the Freundlich adsorption isotherms was shown as bellow:

$$\ln q_e = \ln K_F + \frac{1}{n} \ln C_e$$
⁽²⁾

where q_e and q_{max} represented the equilibrium and maximum Pb²⁺ adsorption (mg g⁻¹), C_e meant the equilibrium Pb²⁺ concentration in solution (mg L⁻¹), K_L was the Langmuir constant and increased with the affinity of sorbent for the sorbate. q_{max}

represented the maximum adsorption capacity (mg g^{-1}) of the sorbent. K_F and n represented constants and favorable adsorptions occur when n was greater than 1.

Hemolysis tests

2% red blood cells (RBCs) suspension was added to MMS/P NRs which were weighed and immerged in saline water for 24 h.⁷ Meanwhile, the RBCs were also incubated with PBS and twice-distilled water as negative control and positive control, respectively. After 1 h incubation, samples were centrifuged for 10 min at 1500 rpm. The optical density of the supernatant was measured at 545 nm. The percent hemolysis was calculated as follows.

Percent hemolysis(%) =
$$\left(\frac{\text{sample absorbance} - \text{negative control absorbance}}{\text{positive control absorbance} - \text{negtive control absorbance}}\right) \times 100$$

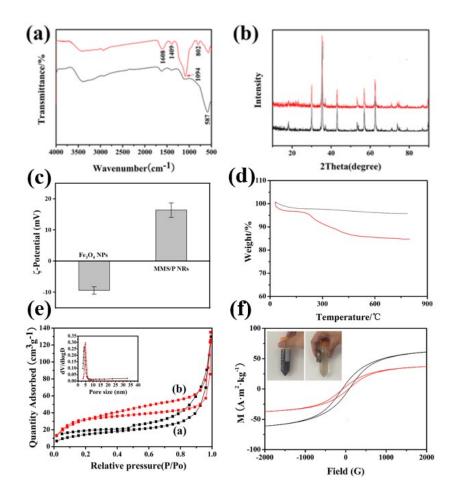
The morphological changes of RBCs were observed and photographed with an Olympus E-620 camera (Olympus Ltd., Japan).⁸

Routine blood analytes

The routine blood analytes were carried out before and after the blood was incubated with the MMS/P NRs.

Immune inflammatory system changes

Interleukin-6 (il-6), tumor necrosis factor- α (TNF- α) and C-reactive protein (crp) are nonspecific pro-inflammatory factors and sensitive markers of inflammatory reaction.⁹ In this work, they were detected by Elisa kit (BD OptEIATM) with a microplate reader (Biotek Synergy2, USA) according to the manufacturer's instructions. Furthermore, in order to further study the peripheral blood lymphocyte


immunity, the proportion of CD3⁺CD4⁺/CD3⁺CD8⁺ cells were calculated by flow cytometer (BD FACSCalibur, USA).¹⁰

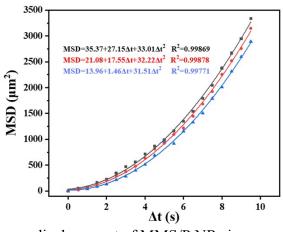
The selective adsorption of haemoglobin(Hb) test

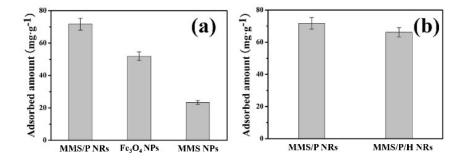
Prepare 2 mg mL⁻¹ Hb solution with the Pb²⁺ concentration of 1 ppm, and silent mix for 60 min. 10 mg mL⁻¹ MMP/NRs were used to adsorb clean Hb and Pb²⁺- contaminated Hb in a variable magnetic field for 30 min, then magnetically separate. The absorbance at 280 nm of the supernatant was measured.

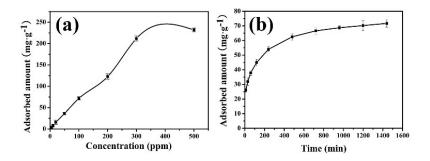
Determination of optimal adsorption conditions

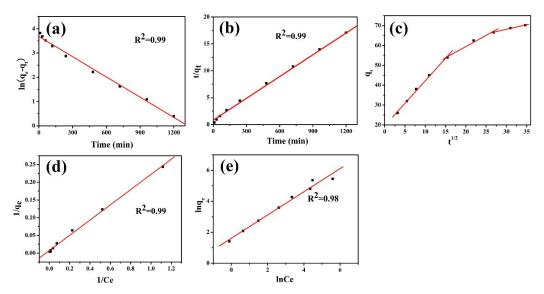
We used different concentrations of MMS/P NRs to adsorb 0.6 ppm Pb²⁺ solution and then determined the adsorption efficiency of Pb²⁺, detected the adsorption efficiency of different origin concentration of Pb²⁺ solution with 10 mg mL⁻¹ MMS/P NRs, and tested the adsorption efficiency of 10 mg mL⁻¹ MMS/P NRs for 0.6 ppm Pb²⁺ solution at different times to obtain the best experimental conditions.

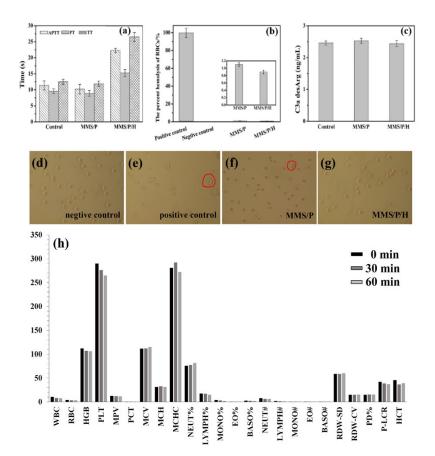
Fig. S1. (a) FT-IR spectra of Fe_3O_4 and MMS/P NRs; (b) the XRD spectra of Fe_3O_4 and MMS/P NRs; (c) ζ -potential of Fe_3O_4 NPs and MMS/P NRs; (d) TGA profiles of Fe_3O_4 (black) and MMS/P NRs (red); (e) nitrogen adsorption-desorption isotherms and pore size distribution (inset) of MMS/P NRs before (black) and after (red) removal of the template, and (f) the hysteresis loops of Fe_3O_4 NPs (black) and MMS/P NRs (red).

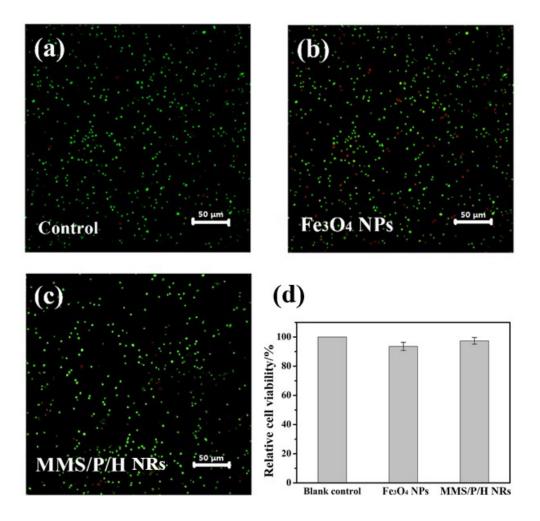


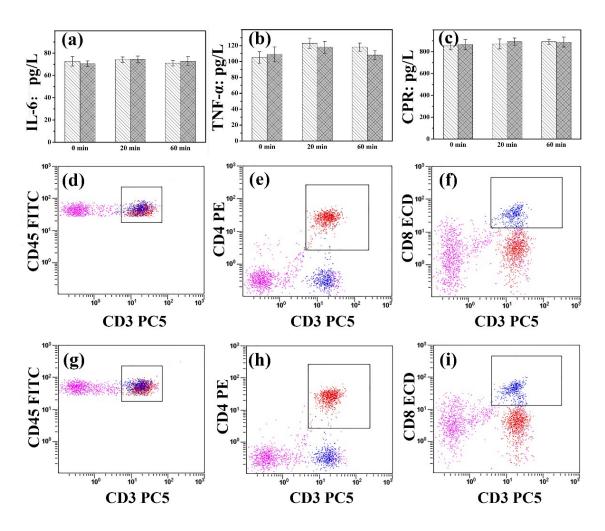


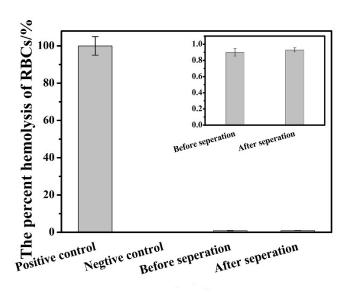

Fig. S2. The mean square displacement of MMS/P NRs in aqueous solution.


Fig. S3. (a) FT-IR spectra of the MMS/P NRs before (black) and after (red) adsorption; (b) the XPS images of the MMS/P NRs before (black) and after (red) Pb²⁺ adsorption process (water phase); and the partial enlarged XPS images of (c) N1s, (d) C1s, (e) Si 2p and (f) Pb 4f of the MMS/P NRs before (black) and after (red) Pb²⁺ adsorption process (water phase).


Fig. S4. Adsorption performance of Pb²⁺ on (a) different samples and (b) before (MMS/P NRs) and after (MMS/P/H NRs) modification of heparin.


Fig. S5. (a) Adsorption performance of Pb^{2+} by MMS/P NRs under different concentration of Pb^{2+} (adsorption time was 24 h); (b) adsorption performance for different time (adsorption concentration was 100 ppm).


Fig. S6. (a) Pseudo-first-order kinetic model plots, (b) pseudo-second-order kinetic model plots and (c) intraparticle diffusion kinetics for the adsorption of Pb^{2+} on the MMS/P NRs; (d) Langmuir and (e) Freundlich adsorption isotherms for the adsorption of Pb^{2+} on the MMS/P NRs.


Fig. S7. (a) APTT/PT/TT values, (b) the hemolysis ratio and (c) the concentration of C3a desArg of MMS/P NRs before and after soaking in heparin solution; optical images of RBCs treated by (d) negative control, (e) positive control (f) MMS/P NRs and (g) MMS/P/H NRs; (h) the routine blood results of the MMS/P NRs.

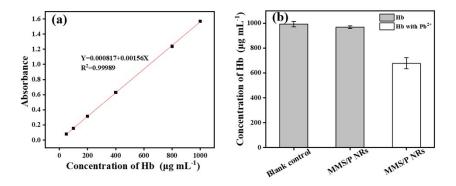

Fig. S8. Fluorescence confocal images of inside peripheral blood lymphocyte before (a) and after being incubated with (b) Fe_3O_4 NPs and (c) the MMS/P/H NRs; (d) cell viability of peripheral blood lymphocyte before and after being incubated with Fe_3O_4 and the MMS/P/H NRs.

Fig. S9. The inflammatory factor (a) IL-6, (b) TNF- α and (c) CRP levels before and after adsorption for different times; effect on cellular immunity and inflammation before and after adsorption by MMS/P/H NRs: (d, e, f) displayed the cellular antigen expression levels of CD3⁺ CD45⁺, CD3⁺ CD4⁺, CD3⁺ CD8⁺ before adsorption, while (g, h, i) showed those levels after adsorption.

Fig. S10. The hemolysis ratio of RBCs before and after MMS/P/H NPs being magnetic seperation.

Fig. S11. (a) Standard concentration curve of Hb. (b) MMS/P NRs selectively adsorb Hb contaminated with Pb²⁺.

Autonomous Materials movement		Adsorption environment	Adsorption mechanism	Ref.	
			Magnetic nanomaterials were coated with		
Pb ²⁺ -bound 1	×	Blood	fluorescent receptors to detect and remove	11	
			Pb^{2+}		
			Heavy-metal binding EDTA-like Chelators		
Fe ₃ C-(PEI-	×	Blood	modified magnetic nanoparticles for the	12	
DTPA) _n			adsorption and separation of Pb2+		
			Nanomagnets coated with poly(ethylene		
C/Fe ₃ C-PEI-		\mathbf{D}_{1} , 1	imine) -iminodiacetic acid were used for	10	
IDA	×	Blood	specific adsorption of Pb2+ and separated	13	
			from blood		
			MPTMS ((3-mercaptopro-Pyl)		
CU CDA 15	~	Dlood and Life	trimethoxysilane) Thiol-groups were used	1 4	
SH-SBA-15	×	Blood and bile	to modify mesoporous silica, and Pb2+ are	14	
			absorbed by -SH on the surface of material		
		Blood and	Fe ₃ O ₄ @SiO ₂ modified with the Meso-2,3-		
Fe ₃ O ₄ @SiO ₂ @ DMSA	×	urine	Dimercaptosuccinic acid and -SH was used	15	
			to capture Pb ²⁺ in blood and urine		
MNP@DMSA	×	Blood, RBCs and plasma	Magnetic nano capture agent coated with	16	
			the Meso-2, 3-Dimercaptosuccinic acid,		
			and -SH was used to capture Pb2+		
			Core-shell structured magnetic	17	
Fe ₃ O ₄ @	×	\mathbf{D}_{1} , 1	microspheres functionalized with the Pb ²⁺ -		
Au@DNA		Blood	binding aptamer as adsorbent, isolate and		
			detect trace Pb ²⁺		
			Construct "cyborg erythrocytes" through		
			the in situ reaction of exogenous calcium		
CaCO ₃ NDs	×	Blood	and carbonate ions to generate calcium	18	
			carbonate nanodots inside erythrocytes can		
			remove Pb ²⁺ in blood poisoning model		
		Disclosed	Non-pathogenic bacteria are decorated with		
Bac@Ceria	\checkmark	Blood and	cerium oxide nanoparticles and adsorb	19	
		organs	excessive Pb2+ in blood and organs		
			Hemoglobin containing Pb ²⁺ is selectively		
	×	Blood and	captured by hyperbranched	20	
MMS/H		RBCs	poly(amidoamine)s, and magnetic separate	20	
			from blood		
		Dlood and	Pb ²⁺ in water-soluble medium was enriched		
SrTiO ₃ NPs	×	Blood and	by physical adsorption of strontium titanate	21	
		urine	nanoparticles (SrTiO ₃)		

Table S1. Summary of current research of the blood Pb²⁺ absorbent

MMS/P NRs √ RBC	MMS/P NRs move autonomously under the guidance of magnetic field, capturing many Pb ²⁺ -contaminated hemoglobin and fixing it This work in the mesoporous area, which was separated from blood by magnetic field
--------------------	---

Table S2. Specific surface, pore diameter and pore volume of MMS/P NRs and MMS

 NPs.

Sample	Specific surface area (m ² g ⁻¹)	Pore diameter (nm)	Pore volume (cm ³ g ⁻¹)
MMS/P NRs	118.56	9.4	0.108
MMS NPs	303.34	10.8	0.306

Table S3. Pseudo-first order, pseudo-second order and intraparticle diffusion kinetic

 model parameters.

Heavy metal ions	Pseudo-first-order kinetic		Pseudo-second-order kinetic		Intraparticle diffusion kinetic	
	K ₁	R ₁	K ₂	R ₂	K _{diff}	R _{diff}
Pb ²⁺					2.27	0.99
ru-	2.8*10-3	0.99	2.5*10-4	0.99	1.13	0.98
					0.46	0.99

Table S4. Langmuir and Freundlich adsorption isothermal constants, correlation

coefficients.

Heavy metal ions		Langmuir			Freundlich		
Pb ²⁺	q _{max}	K _L	R ²	n	K _F	R ²	
1.0-	131.58	0.0354	0.99	1.34	5.04	0.98	

adsorbent/m g·mL ⁻¹	adsorption efficiency/%	adsorption time/min	adsorption efficiency/%	Pb ²⁺ /ppm	adsorption efficiency/%
1	31.72	10	26.61	0.6	65.87
2	43.98	30	65.87	1	63.35
5	57.39	45	66.57	2	43.04
10	65.87	60	66.38	5	34.19
20	68.87	90	67.29	10	33.46
50	70.26	١	\	١	\

Table S5. The efficiency of Pb^{2+} adsorption in the aqueous condition.

Table S6. The bond length and bond dissociation energy of Pb^{2+} bound with ϵ -PL.

	Pb-N14	Pb-N3	Pb-O2	N3-Pb-N14	N14-Pb-O2
		2.48	2.07	N3-Pb	O2-Pb
Dendleneth (Å)	2.25			2.45	2.20
Bond length (Å)	2.35			N14-Pb	N14-Pb
				2.41	2.41
Bond dissociation energy (kJ mol ⁻¹)	149.05	132.65	157.03	203.03	156.16

Table S7. Comparison of HOMO-LUMO transition energies between Pb^{2+} and ϵ -PL.

	HOMO(Hartree)	LUMO(Hartree)	E _{gap} (Hartree)
Pb-N14	-0.28462	-0,14491	0.13971
Pb-N3	-0.27543	-0.15518	0.12025
Pb-O2	-0.27414	-0.13345	0.14069
N3-Pb-N14	-0.32621	-0.1058	0.22041
N14-Pb-O2	-0.29938	-0.1112	0.18818

Reference

(1) S. M. Ponder, J. G. Darab and T. E. Mallouk, Environ. Sci. Technol., 2000, 34, 2564-2569.

- (2) H. Chen, M. F. Neerman, A. R. Parrish and E. E. Simanek, J. Am. Chem. Soc., 2004, 126, 10044-10048.
- (3) M. M. Wan, Y. Y. Li, T. Yang, T. Zhang, X. D. Sun and J. H. Zhu, Chem. Eur. J., 2016, 22, 6294-6301.
- (4) G. Zhao, J. Li, X. Ren, C. Chen and X. Wang, *Environ. Sci. Technol.*, 2011, **45**, 10454-10462.
- (5) H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang and R. Qiu, *Water Res.*, 2012, 46, 854-862.
- (6) S. Y. Liu, J. Gao, Y. J. Yang, Y. C. Yang and Z. X. Ye, *J. Hazard. Mater.*, 2010, 173, 558-562.
- (7) R. K. Kainthan, J. Janzen, E. Levin, D. V. Devine and D. E. Brooks, *Biomacromolecules*, 2006, 7, 703-709.
- (8) F. Peng, H. Li, D. Wang, P. Tian, Y. Tian,; G. Yuan, D. Xu and X. Liu, ACS Appl.
 Mater. Interfaces, 2016, 8, 35033-35044.
- (9) V. Panichi, M. Migliori, S. De Pietro, D. Taccola, B. Andreini, M. R. Metelli, L. Giovannini and R. Palla, *Kidney Int.*, 2000, 76, S96-103.
- (10) A. Naji, S. Le Rond, A. Durrbach, I. Krawice-Radanne, C. Creput, M. Daouya, J. Caumartin, J. LeMaoult, E. D. Carosella and N. Rouas-Freiss, *Blood*, 2007, **110**, 3936-3948.
- (11) H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han and J. H. Jung, Angew. Chem.

Int. Ed., 2009, 48, 1239-1243.

- (12) I. K. Herrmann, M. Urner, F. M. Koehler, M. Hasler, B. Roth-Z'graggen, R. N.
- Grass, U. Ziegler and B. Beck-Schimmer, W. J. Stark, Small, 2010, 6, 1388-1392.
- (13) I. K. Herrmann, A. Schlegel, R. Graf, C. M. Schumacher, N. Senn, M. Hasler, S.
- Gschwind, A. M. Hirt, D. Gunther, P. A. Clavien, W. J. Stark and B. Beck-Schimmer, *Nanoscale*, 2013, **5**, 8718-8723.
- (14) W. Huang, P. Zhang, H. Xu, S. Chang, Y. He, F. Wang and G. Liang, Nanotechnology, 2015, 26, 385101.
- (15) Y. Xiang, Z. Bai, S. Zhang, Y. Sun, S. Wang, X. Wei, W. Mo, J. Long, Z. Liu, C. Yang, L. Zheng, X. Guo, W. Xiaoyang, F. Mao and N. Feng, *Nanomed.-Nanotechnol.*, 2017, 13, 1341-1351.
- (16) X. Guo, W. Wang, X. Yuan, Y. Yang, Q. Tian, Y. Xiang, Y. Sun and Z. Bai, J.*Colloid Interf. Sci.*, 2019, **536**, 563-574.
- (17) Y. K. Li, W. T. Li, X. Liu, T. Yang, M. L. Chen and J. H. Wang, *Talanta*, 2019, 203, 210-219.
- (18) X. Ru, Y. Guo, Z. Bai, X. Xie, X. Ma, L. Zhu, K. Wang, F. Wang, L. Yang and J.Lu, *Commun. Chem.*, 2019, 2, 105.
- (19) P. Pan, J. X. Fan, X. N. Wang, J. W. Wang, D. W. Zheng, H. Cheng and X. Z.Zhang, *Adv. Sci.*, 2019, 6, 1902500.
- (20) M. M. Wan, T. T. Xu, B. Chi, M. Wang, Y. Huang, Q. Wang, T. Li, W. Q. Yan,
 H. Chen, P. Xu, C. Mao, B. Zhao, J. Shen, H. Xu and D. Q. Shi, *Angew. Chem. Int. Ed.*,
 2019, 58, 10582-10586.

(21) W. I. Mortada and A. M. Abdelghany, Biol. Trace Elem. Res., 2020, 193, 100-110.