Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Design of biodegradable bi-compartmental microneedles for the stabilization and the controlled release of the labile molecule collagenase for skin healthcare

Concetta Di Natale [§] ^{a,b}, Domenico De Rosa [§] ^a, Martina Profeta ^a, Rezvan Jamaledin ^a, Alessandro Attanasio ^a, Elena Lagreca ^a, Pasqualina Liana Scognamiglio ^a, Paolo Antonio Netti ^{a, b} and Raffaele Vecchione1 * ^a.

^a Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli 80125, Italy

^b Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.le Tecchio 80, Naples 80125, Italy

[§] These authors contributd equally

* Correspondence should be addressed to Ing.PhD Raffaele Vecchione

E-mail: Raffaele.vecchione@iit.it

Figure S1: Collagenase MPs production with (A) and without (B) porogenic agent

Figure S2: Morphological characterization of Collagenase-standard. A) SEM microscopy, B) Confocal analysis: Fluorescence images were acquired using a λ_{exc} of 488 nm and a λ_{emiss} between 500 and 600 nm. Red signal is related to PLGA acquired in DAPI range.

Figure S3: Z-stack analysis of A) control sample and B) treated collagen.

Figure S4: MPs before (A) and after microneedle production process (B).

Figure S5: Release test of 600 μm microneedles loaded with the Standard MPs in the in vitro skin equivalent model after 30 min; top and middle view. A-D) Merge of green and red channels; B-E) red channel; C-F) green channel.

Figure S6: Release test of 600 μm microneedles loaded with the Standard MPs in the in vitro skin equivalent model after 2h; top and middle view. A-D) Merge of green and red channels; B-E) red channel; C-F) green channel.

Figure S7: Release test of 600 μm microneedles loaded with the Standard MPs in the in vitro skin equivalent model after 24h; top and middle view. A-D) Merge of green and red channels; B-E) red channel; C-F) green channel.

Figure S8: Release test of 600 µm microneedles loaded with the ABC- MPs in the in vitro skin equivalent model after 30 min; top and middle view. A) Merge of green and red channels; B) red channel; C) green channel.

Figure S9: Release test of 600 μm microneedles loaded with the ABC- MPs in the in vitro skin equivalent model after 2h; top and middle view. A-D) Merge of green and red channels; B-E) red channel; C-F) green channel.

Figure S10: Release test of 600 µm microneedles loaded with the ABC- MPs in the in vitro skin equivalent model after 24h; top and middle view. A-D) Merge of green and red channels; B-E) red channel; C-F) green channel.

Table S1. Degree of loading (DOL) and % of activity of Collagenase after ATTO-488 and
ATTO-740 conjugation.

Collagenase	DOL	% Activity
ATTO-488	2	70.26±0.2
ATTO-740	1.67	9.17±2.1

 Table S2. Collagenase ABC and standard MPs features.

Collagenase -488 MPs	% η	% Release in 2h	D _{average} (μm)
ABC	93.43± 4.0	39.57±2.29	13.23±9.5
Standard	23.86± 2.3	8.45±1.08	9.62±4.61