Supporting Information

Metal-DNA coordination based bioinspired hybrid nanospheres for in situ amplification and sensing of microRNA

Yijing Jia,^{‡,a} Xiaotong Shen,^{‡,b} Feifei Sun,^a Na Na,^a and Jin Ouyang^{*,a}

^aKey Laboratory of Theoretical and Computational Photochemistry, Ministry of

Education, College of Chemistry, Beijing Normal University, Beijing 100875, China

^bSchool of Life Science, Beijing Institute of Technology,

Beijing 100081, China

*Corresponding author: Jin Ouyang

Tel: +86-10-58805373; Fax: +86-10-62799838

E-mail address: jinoyang@bnu.edu.cn

[‡]These authors contributed equally to this work.

Table of Contents

Fig. S1. Ideal structure and thermal kinetic parameters of H1, H2. (Page 3)

Fig. S2. Zeta potential of NWs. (Page 4)

Fig. S3. Detection of miR-21-DNA by NWs-based method. (Page 5)

Fig. S4. Specificity investigation of the proposed strategy for miR-21. (Page 6)

Fig. S5. Cell viability of NWs against HepG2 cells with different treatments after 24 h incubation. (Page 7)

Fig. S6. Confocal microscopy images of HepG2 cells treated with different NWs concentration. (Page 8)

Fig. S7. Confocal microscopy images of HepG2 cells treated with NWs after different incubation times. (Page 9)

Fig. S8. RT-PCR detection of cell extracts from (a) HepG2 cells, (b) CCC-HEL-1 cells, (c) HepG2 cells treated with miR-21 inhibitor oligonucleotide, and blank control group without target treatment. (Page 10)

Table S1. Oligonucleotide sequences designed in the current study. (Page 11)

Table S2. Recovery results for the assay of microRNA in human serum. (Page 12)

Results and Discussion

Fig. S1. Ideal hairpin structure and thermal kinetic parameters of H1 and H2.

Fig. S2. Zeta potential of NWs.

Fig. S3. Detection of miR-21-DNA by NWs-based method. (a) In vitro FL spectra for different concentrations of DNA: 0, 100 fM, 1 pM, 10 pM, 100 pM, 1 nM, 10 nM, and 50 nM, respectively. (b) The linear relationship between the fluorescence signal and the logarithm of concentrations of miR-21-DNA. The illustrated error bars represented the standard deviation of three independent measurements.

Fig. S4. Specificity investigation of the proposed strategy for miR-21. The assays were carried out in the reaction buffer for a fixed primer concentration of 10 nM.

Fig. S5. Cell viability of NWs against HepG2 cells with different treatments after 24 h incubation. Error bars denote the standard deviation (n = 3).

Fig. S6. Confocal microscopy images of HepG2 cells treated with different NWs concentration. Scale bars = $20 \mu m$.

Fig. S7. Confocal microscopy images of HepG2 cells treated with NWs after different incubation times. Scale bars = $20 \ \mu m$.

Fig. S8. RT-PCR detection of cell extracts from (a) HepG2 cells, (b) CCC-HEL-1 cells, (c) HepG2 cells treated with miR-21 inhibitor oligonucleotide, and blank control group without target treatment.

Name	Detailed sequence information (from 5' to 3')		
H1	ATCAGACTGATGTTGATAGGTCTCAACATCAGTCT		
	GATAAGCTA		
H2	GACCTATCAACATC-FAM-AGTCTGATTAGCTTATCA		
	GACT-BHQ1-GATGTTGA		
miR-21	UAG CUU AUC AGA CUG AUG UUG A		
miR-21-a	UAG C <mark>G</mark> U AUC AGA CUG AUG UUG A		
miR-21-b	UAG C <u>A</u> U AUC AGA CUG AUG UUG A		
miR-21-c	UAG C <mark>C</mark> U AUC AGA CUG AUG UUG A		
miR-21-DNA	TAG CTT ATC AGA CTG ATG TTG A		
miR-21 inhibitor	UCA ACA UCA GUC UGA UAA GCU A		
miR-141	UAA CAC UGU CUG GUA AAG AUG G		
miR-155	UUA AUG CUA AUC GUG AUA GGG GU		
Let-7a	UGA GGU AGU AGG UUG UAU AGU U		
RT primer	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTG		
	GATACGACTCAACA		
Forward primer	GCCCGCTAGCTTATCAGACTGATG		
Reverse primer	GTGCAGGGTCCGAGGT		

Table S1. Oligonucleotide sequences designed in the current study.

The hairpin structures for H1and H2 are labelled in the same color as it illustrated in the Scheme 1. The miR-21-a, miR-21-b, miR-21-c are single-base mismatched strand of the miRNA-21.

NO.	Target miRNA	Target miRNA	Recovery	DSD0/(n-5)
	spiked (10 ⁻¹² M)	detected (10 ⁻¹² M)	(%)	KSD% (II-3)
1	10	9.6	96.0	5.3
2	20	20.5	102.5	4.1
3	50	49.3	98.6	3.8
4	100	103.2	103.2	4.7
5	200	190.8	95.4	6.4
6	500	486.5	97.3	5.2
7	1000	1068.1	106.8	4.3

Table S2. Recovery results for the assay of microRNA in 10% human serum.