Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supplementary materials for manuscript

Growth Factors Regional Patterned and Photoimmobilized Scaffold Applied to Bone Tissue Regeneration

Ling-Kun Zhang^{1,2#}, Wu-Ya Chen^{1#}, Hui-Min Wang^{1#}, Chao Liu¹, Jiecheng He¹, Yunzhi Tang¹, Yuxuan Jiao¹, Yan-Qing Guan^{1,2*}

¹School of Life Science, South China Normal University, Guangzhou 510631, China

²South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China

Corresponding author at: School of Life Science, South China Normal University, Guangzhou 510631, P. R. China. Tel.: (+86-20)85211241; E-mail address: guanyq@scnu.edu.cn (Y-Q Guan).

[#]These authors contributed equally to this work and should be considered co-first authors.

Additional Experimental Section

Methods

Create a new document in Matlab 2014a software and enter the following program in the program window to simulate the UV double-slit interference experiment:

```
lam=250e-9;
d=1e-2;
D=0.1;
ym=5*lam*D/d;
xs=ym;
n=101;
ys=linspace(-ym,ym,n);
for i=1:n
r1=sqrt((ys(i)-d/2).^{2}+D^{2});
r2=sqrt((ys(i)+d/2).^2+D^2);
phi=2*pi*(r2-r1)./lam;
B(i,:)=sum(4*cos(phi/2).^2);
end
N=255;
Br = (B/4.0) N
subplot(1,2,1)
image(xs,ys,Br);
colormap(gray(N));
subplot(1,2,2)
plot(B,ys);
```

>>edit_interval=edit_lam*edit_D/(edit_d*10000); num1=str2num(get(handles.edir_lam,'string')); num2=str2num(get(handles.edit_D,'string'));

```
num3=str2num(get(handles.edit_d,'string'));
num4=num2str(num1*num2/(num3*10000));
set(handles.edit_interval,'string',num4);
```

Enter the following procedure to simulate the ultraviolet diffraction experiment:

```
a=0.001;
     b=0.001;
     lmda=250e-9;
     f=0.79;
     xm=0.075;
     def=0.001;
     I0=1;
     [x,y] = meshgrid(-xm:def:xm);
     alpha=(pi*a*x)/(f*lmda);
     beta=(pi*b*y)/(f*lmda);
     I= I0*(sin(alpha).^2.*sin(beta).^2./((alpha.^2+eps).*(beta.^2+eps)));
      figure
      imshow(I*255)
     xlabel('x');
     ylabel('y');
     figure
     mesh(x,y,I)
     xlabel('x');
     ylabel('y');
      zlabel(' light intensity');
Output results.
```

Results

Computer simulation of interference/diffraction.

As shown in Fig. S1, we successfully use 2014 a MatLab software to simulate the phenomena of double-slit to UV light. We enter the experimental conditions for $\lambda = 250$ nm, D = 10 cm, d = 1 cm, the result is shown in Fig. S1A and B. When the wavelength of 250 nm UV light into a spacing of 1 cm double slit, projected from the double seam on the screen of her 10 cm, will present center spacing of 25 microns of light and shade and white stripe.

Fig. S1. Computer simulation of optical experiments. A: UV interference B: The UV produce a diffraction pattern when transmitted through grating.

After the computer simulation of the interference/diffraction phenomenon of ultraviolet

light, the conditions of interference were determined as follows: The conditions of the diffraction are: $\lambda = 250$ nm, D = 79 cm, a = 5 mm, and b = 5 mm, the result is shown in Fig. S3B. According to the above conditions, a simple optical device is prepared to satisfy the experimental conditions.