Melanin pigments extracted from horsehair as antibacterial agents

Tahmineh Rahmani Eliato, Joshua T. Smith, Zhen Tian, Eun-Sik Kim, Wonseok Hwang, Cheryl P. Andam, and Young Jo Kim*

Supporting Information

Fig. S1: (a) *Equus ferrus* hair fibers and (b) *Equus*Mel powder after extraction. (c) UV-Vis absorbance spectrum is shown for the *Equus*Mel solution (200 μ g/ml). This exhibits the broad band monotonic absorbance without the distinct peaks.

Fig. S2. Transmission electron microscopy (TEM) (a) and Small- angle X-ray scattering (SAXS) suggest that *Equus*Mel has multilayer surface with semi-crystalline structure.

Fig. S3. High-resolution N 1s XPS spectra from *Equus*Mel and SynMel are shown. Peak fitting (blue line) is performed by CasaXPS. The peak at binding energy of 400.11 ± 0.014 represents C-N stretching from the secondary amine functional group in indole.

Fig. S4. Static water contact angle measurement exhibits (a) hydrophobic *Equus*Mel (contact angle= $104.7 \pm 2.2^{\circ}$) and (b) superhydrophilic SynMel (contact angle= 0°). Melanin pellets were prepared to exhibit the flat top surface before applying $10 \,\mu$ l of ddH₂O.

Fig. S5. (a) Antibacterial activity of *Equus*Mel and SynMel against *S. aureus* are shown after 4 h of incubation. + Light signifies that bacterial incubation with melanins occurred under ambient condition while – Light indicates light exposure was minimized as much as possible throughout the experiment from 7 days prior to incubation through colony counting. Detailed values of colony count can be found from the (b) enlarged view.

Table S1. Peak assignments of FTIR spectra for *Equus*Mel and SynMel.

Wavenumber (cm ⁻¹)	Vibration mode and main functional groups
3400 - 3200	Stretching vibration of O–H and N–H groups (carboxylic acid and phenolic OH, anime in indole, pyrrole, and amino acids)
2950 - 2850	Stretching vibration of C-H
1720 - 1706	Stretching vibration of aromatic C=O in carboxylic acid
1650 - 1600	Stretching vibration of Conjugated C=C
1342 - 1266	Stretching vibration of C-N in indole
680 - 860	Bending vibration of aromatic C-H

Peak position, cm ⁻¹				
<i>Equus</i> Mel	SynMel	Vibration mode and main functional groups		
1224.404	1237.68445	(α) C–O stretching in carboxylic acid and C–OH		
1348.694	1348.01362	(β) stretching vibration of aromatic C–N in indole		
1431.441	1437.68445	(γ) pyrrole ring stretching		
1507.377	1509.1941	(δ) stretching vibration of C=N in semiquinone and bending vibration of N–H		
1588.081	1575.48241	(ɛ) stretching vibration of aromatic C=C in indole		

Table S2. Peak positions of Raman spectra of *Equus*Mel and SynMel are shown after the deconvolution using voigt function.

Binding energy, eV						
	O 1s	N 1s	C 1s			
<i>Equus</i> Mel	532.17 [C-OH]	400.12 [C–N]	284.8 [C-C]/[C=C]			
	533.82 [COOH]		287.19 [C–N]/[C–O]			
SynMel	531.12 [C–O]	400.10 [C–N]	284.8 [C–C]/[C=C]			
	532.62 [C–OH]		287.26 [C–N]/[C–O]			

Table S3. Summary of high-resolution XPS analysis of *Equus*Mel and SynMel.

Table S4. Bactericidal activity of *Equus*Mel and SynMel against *E. coli* and *S. aureus* after incubating for 4 h under ambient light.

Bacterial species	E. coli		S. aureus	
Concentration (mg/ml)	<i>Equus</i> Mel	SynMel	<i>Equus</i> Mel	SynMel
150	100 %	100 %	100 %	100 %
20	98.12 %	100 %	100 %	100 %
5	69.06 %	98.12 %	76.67 %	98.54 %
2.5	6.87 %	61.87 %	30.1 %	93.2 %