Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Chemodynamic/photothermal synergistic therapy based on Ce-

doped Cu-Al layered double hydroxide

Zhengdi Wang, ‡ Liyang Fu, ‡ Yu Zhu, Sa Wang, Guohong Shen, Lan Jin*, Ruizheng Liang*

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

E-mail addresses: <u>liangrz@mail.buct.edu.cn</u> (R. Liang); <u>jinlan@mail.buct.edu.cn</u> (L. Jin) ‡ These authors contributed equally to this work.

Scheme S1. Schematic illustration of the bottom-up method of synthesizing CuAlCe-LDH.

Table S1.	The feed	ratio and	the actual	ratio of LDI	H determined b	ov ICP.
10010 011	The recu	racio ane	the actual		i acterimica k	,,

Sample	Feed ratio	Actual ratio	References
Cu Al-LDH	2:1	2.47 : 1	this work
Cu Al Ce-LDH	2:0.5:0.5	2.32 : 0.57 : 0.43	this work
Cu Al Ce-LDH	2:0.67:0.33	2.21:0.65:0.34	this work
Cu Al Ce-LDH	2:0.75:0.25	2.37 : 0.75 : 0.28	this work
Mg Al Ce-LDH	3:0.8:0.2	0.73 : 0.24 : 0.014	1, 2
Ni Fe Ce-LDH		doping 5% Ce	3

Table S2. The K_M and V_{max} values of different Fenton catalysts.

Sample	<i>K_M</i> (mM)	<i>V_{max}</i> (M⋅s ⁻¹)	References
ICG/CuAlCe-LDH	1.57	4.88×10 ⁻⁶	this work
FeAl-LDH	0.16	1.47×10 ⁻⁶	4
PEG/Fe-LDHs	0.09	1.76×10 ⁻⁶	4
Fe ₃ O ₄ NPs	26.08	6.17×10 ⁻⁸	5
Mn-NS	26.40	7.04×10 ⁻⁸	6
Fe ₃ O ₄ @PPy@GOD NCs	4.94	1.13×10 ⁻⁸	7

Fig. S1 XRD pattern of CuAl-LDH (2:1) nanosheets after restocking.

Fig. S2 H_2O_2 reacts with CuAl-LDH and CuAlCe-LDH to oxidate TMB at pH=6.5, and the absorbance (650 nm) of reactants is determined *via* UV spectrum.

Fig. S3 TEM image of CAC-LDH nanosheets with corresponding EDX mapping images for Cu, Al, Ce and O, respectively.

Fig. S4 The hydrodynamic size of CAC-LDH.

Fig. S5 Zeta potential of ICG and CAC-LDH.

Fig. S6 The UV-vis-NIR of ICG aqueous solution before and after adsorption with CAC-LDH.

Fig. S7 FTIR spectra of CAC-LDH, ICG and ICG/CAC-LDH, respectively.

Fig. S8 (A) TEM and (B) AFM of ICG/CAC-LDH.

Fig. S9 Size distribution of ICG/CAC-LDH in water, PBS, and culture medium (DMEM).

Fig. S10 UV-vis-NIR spectra of ICG, CAC-LDH and ICG/CAC-LDH, respectively.

Fig. S11 Release profiles of copper (A) and cerium (B) from ICG/CAC-LDHs under various conditions. Error bars represented for standard deviation, n = 3.

Fig. S12 Cu (I) detected by the selective sequestering agent neocuproine.

Fig. S13 FL spectra of terephthalate (TA) oxidized by \cdot OH generated from the reactions between ICG/CAC-LDH and H₂O₂: (A) without 808 nm laser irradiation; (B) with 808 nm laser irradiation.

Fig. S14 TEM images of CAC-LDH after different treatments for various periods of time.

Fig. S15 Mass extinction coefficient of ICG (A) and ICG/CAC-LDH (B) at 808 nm. Normalized absorbance intensity at λ = 808 nm divided by the characteristic length of cell (A/L) at varying concentrations.

Fig. S16 Photostability tests of ICG and ICG/CAC-LDH for three cycles.

Fig. S17 Normalized absorbance of ICG and ICG/CAC-LDH at 808 nm in solutions at different pH values with H_2O_2 (0.1 mM).

Fig. S18 Cytotoxicity tests with different concentrations of CuAlCe-LDH and H_2O_2 in different pH conditions.

Fig. S19 Relative viabilities of HepG2 cells after incubated with ICG and ICG/CAC-LDH at various concentrations (quantified by ICG: 0, 5, 10, 15, 20, 25 μ g·mL⁻¹) at pH 6.5 with 808 nm laser irradiation.

Fig. S20 GSH content of HepG2 cells treated with different concentrations of CAC-LDH (0–50 μ g·mL⁻¹) for 24 h.

Fig. S21 ROS levels of DCFH-DA stained HepG2 cells with different treatments.

Fig. S22 Linear relationship between PA signal and ICG/CAC-LDH concentration under the conditions of (A) GSH (1 mM) and (B) H_2O_2 (0.1 mM). Linear relationship between T_1 -MR signal and Cu(II) concentration under the conditions of (C) GSH (1 mM) and (D) H_2O_2 (0.1 mM).

REFERENCES

- (1) K. W. Iqbal, A. Iqbal, A. M. Kirillov, B. K. Wang, W. S. Liu and Y. Tang, *J. Mater. Chem. A.*, 2017, **5**, 6716.
- (2) K. W. Iqbal, A. Iqbal, A. M. Kirillov, C. F. Shan, W. S. Liu and Y. Tang, *J. Mater. Chem. A.*, 2018, **6**, 4515.
- (3) H. J. Xu, B. K. Wang, C. F. Shan, P. X. Xi, W. S. Liu and Y. Tang, *ACS Appl. Mater. Inter.*, 2018, **10**, 6336–6345.
- (4) Z. B. Cao, L. Zhang, K. Liang, S. S. Cheong, C. Boyer, J. J. Gooding, Y. Chen and Z. Gu, *Adv. Sci.*, 2018, **5**, 1801155.
- (5) M. Huo, L. Wang, Y. Chen and J. Shi, Nat. Commun., 2017, 8, 357.
- (6) W. Tang, W. P. Fan, W. Z. Zhang, Z. Yang, L. Li, Z. T. Wang, Y. L. Chiang, Y. J. Liu, L. M. Deng, L. C. He, Z. Y. Shen, O. Jacobson, M. A. Aronova, A. Jin, J. Xie and X. Y. Chen, *Adv. Mater.*, 2019, **31**, 1900401.
- (7) W. Feng, X. G. Han, R. Y. Wang, X. Gao, P. Hu, W. W. Yue, Y. Chen and J. L. Shi, *Adv. Mater.*, 2019, **31**, 1805919.